每日一题

数专竞赛,备赛参考.

2022.9

2022.9.11

【题】

N(0,0,1)N(0,0,1) 是球面 S:x2+y2+z2=1S: x^{2}+y^{2}+z^{2}=1 的北极点.

A(a1,a2,0),B(b1,b2,0),C(c1,c2,0)A\left(a_{1}, a_{2}, 0\right), B\left(b_{1}, b_{2}, 0\right), C\left(c_{1}, c_{2}, 0\right)xOyx O y 面上不同的三点.

设连接 NNA,B,CA, B, C 的三直线依次交球面 SS 于点 A1,B1,C1A_{1}, B_{1}, C_{1} .

(1)(1) 求连接 N\boldsymbol{N}A\boldsymbol{A} 两点的直线方程;

(2) 求点 A1,B1,C1A_{1}, B_{1}, C_{1} 三点的坐标;

(3) 给定点 A(1,1,0),B(1,1,0),C(1,1,0)A(1,-1,0), B(-1,1,0), C(1,1,0) ,求四面体 NA1B1C1N A_{1} B_{1} C_{1} 的体积..\blacktriangleright

\blacktriangleleft

(1)(1) 由直线的两点式方程,直接可得过 N,AN, A 两点的直线方程为 xa1=ya2=z11\frac{x}{a_{1}}=\frac{y}{a_{2}}=\frac{z-1}{-1} .

(2)(2) 直线 NAN A 的参数方程为 x=a1t,y=a2t,z=1tx=a_{1} t, y=a_{2} t, z=1-t , 将其代入球面方程,得

(a1t)2+(a2t)2+(1t)2=1\left(a_{1} t\right)^{2}+\left(a_{2} t\right)^{2}+(1-t)^{2}=1

解得参数值为 t=2a12+a22+1t=\frac{2}{a_{1}^{2}+a_{2}^{2}+1}t=0t=0 . 从容可得 A1A_{1} 的坐标为 A1(2a1a12+a22+1,2a2a12+a22+1,a12+a221a12+a22+1)A_{1}\left(\frac{2 a_{1}}{a_{1}^{2}+a_{2}^{2}+1}, \frac{2 a_{2}}{a_{1}^{2}+a_{2}^{2}+1}, \frac{a_{1}^{2}+a_{2}^{2}-1}{a_{1}^{2}+a_{2}^{2}+1}\right) . 同理不难得到 B1,C1B_{1}, C_{1} 的坐标。

(3)(3)(2)(2)和已知坐标,代入可得 A1,B1,C1A_{1}, B_{1}, C_{1} 的坐标为 A1=(23,23,13),B1=(23,23,13),C1=(23,23,13)A_{1}=\left(\frac{2}{3},-\frac{2}{3}, \frac{1}{3}\right), B_{1}=\left(-\frac{2}{3}, \frac{2}{3}, \frac{1}{3}\right), C_{1}=\left(\frac{2}{3}, \frac{2}{3}, \frac{1}{3}\right) 所以,由向量混合积的几何意义,可得四面体体积为

V=16(NA1,NB1,NC1)=16232323232323232323=163227=1681\begin{aligned} V &=\frac{1}{6}\left|\left(\overrightarrow{N A_{1}}, \overrightarrow{N B_{1}}, \overrightarrow{N C_{1}}\right)\right| \\ &=\frac{1}{6}\left\|\begin{array}{rrr} \frac{2}{3} & -\frac{2}{3} & \frac{2}{3} \\ -\frac{2}{3} & \frac{2}{3} & \frac{2}{3} \\ -\frac{2}{3} & -\frac{2}{3} & -\frac{2}{3} \end{array}\right\|=\frac{1}{6} \cdot \frac{32}{27}=\frac{16}{81} \end{aligned}

\blacksquare


2022.9.10

请从以下题目中任选一题作答

【题11
分别在复数域 C\mathbf{C} 和实数域 R\mathbf{R} 上写出 xn1x^{n}-1 的因式分解表达式..\blacktriangleright

【题22
Γ\Gamma 为形如下列形式的 20162016 阶矩阵全体:每行每列只有一个非零元素, 且该非零元素为 11 , 试求解 AΓA.\sum_{A \in \Gamma}|A|.\blacktriangleright

\blacktriangleleft

【题11

εk=cos2kπn+isin2kπn(k=0,1,,n1)\varepsilon_{k}=\cos \frac{2 k \pi}{n}+i \sin \frac{2 k \pi}{n}(k=0,1, \cdots, n-1) . 因为 xn1x^{n}-1 在复数域 C\mathbf{C} 中恰 有 nn 个根 εk(k=0,1,,n1)\varepsilon_{k}(k=0,1, \cdots, n-1) , 所以多项式 xn1x^{n}-1 在复数域 C\mathbf{C} 上的因式分解为

xn1=(x1)(xε1)(xε2)(xεn1)=k=0n1[x(cos2kπn+isin2kπn)]x^{n}-1=(x-1)\left(x-\varepsilon_{1}\right)\left(x-\varepsilon_{2}\right) \cdots\left(x-\varepsilon_{n-1}\right)=\prod_{k=0}^{n-1}\left[x-\left(\cos \frac{2 k \pi}{n}+i \sin \frac{2 k \pi}{n}\right)\right]

下面讨论多项式 xn1x^{n}-1 在实数域 R\mathbf{R} 上的因式分解. 注意到 εk\varepsilon_{k} 的共轭复数 εk=cos2kπnisin2kπn=cos2(nk)πn+isin2(nk)πn=εnk\overline{\varepsilon_{k}}=\cos \frac{2 k \pi}{n}-i \sin \frac{2 k \pi}{n}=\cos \frac{2(n-k) \pi}{n}+i \sin \frac{2(n-k) \pi}{n}=\varepsilon_{n-k} ,
所以 εk+εnk=εk+εk=2cos2kπn\varepsilon_{k}+\varepsilon_{n-k}=\varepsilon_{k}+\overline{\varepsilon_{k}}=2 \cos \frac{2 k \pi}{n} 为实数, 且由于

(εk+εnk)24=4cos22kπn4<0(k=1,,n1),\left(\varepsilon_{k}+\varepsilon_{n-k}\right)^{2}-4=4 \cos ^{2} \frac{2 k \pi}{n}-4<0 \quad(k=1, \cdots, n-1),

x2(εk+εnk)x+1x^{2}-\left(\varepsilon_{k}+\varepsilon_{n-k}\right) x+1 是实数域 R\mathbf{R} 上的不可约多项式.

从而当 nn 为奇数时, 有

xn1=(x1)[x2(ε1+εn1)x+1][x2(ε2+εn2)x+1][x2(εn12+εn+12)x+1]=(x1)[x22xcos2πn+1][x22xcos4πn+1][x22xcos(n1)πn+1]=(x1)k=1n12(x22xcos2kπn+1)x^{n}-1=(x-1)\left[x^{2}-\left(\varepsilon_{1}+\varepsilon_{n-1}\right) x+1\right]\left[x^{2}-\left(\varepsilon_{2}+\varepsilon_{n-2}\right) x+1\right] \cdots\left[x^{2}-\left(\varepsilon_{\frac{n-1}{2}}+\varepsilon_{\frac{n+1}{2}}\right) x+1\right] =(x-1)\left[x^{2}-2 x \cos \frac{2 \pi}{n}+1\right]\left[x^{2}-2 x \cos \frac{4 \pi}{n}+1\right] \cdots\left[x^{2}-2 x \cos \frac{(n-1) \pi}{n}+1\right] =(x-1) \prod_{k=1}^{\frac{n-1}{2}}\left(x^{2}-2 x \cos \frac{2 k \pi}{n}+1\right)

nn 为偶数时, 则为

xn1=(x1)(x+1)[x2(ε1+εn1)x+1][x2(ε2+εn2)x+1][x2(εn22+εn+222)x+1]=(x1)(x+1)[x22xcos2πn+1][x22xcos4πn+1][x22xcos(n2)πn+1]=(x1)(x+1)k=1n22(x22xcos2kπn+1).\begin{aligned} x^{n}-1=&(x-1)(x+1)\left[x^{2}-\left(\varepsilon_{1}+\varepsilon_{n-1}\right) x+1\right]\left[x^{2}-\left(\varepsilon_{2}+\varepsilon_{n-2}\right) x+1\right] \\ & \cdots\left[x^{2}-\left(\varepsilon_{\frac{n-2}{2}}+\varepsilon_{\frac{n+2}{2}}^{2}\right) x+1\right] \\ =&(x-1)(x+1)\left[x^{2}-2 x \cos \frac{2 \pi}{n}+1\right]\left[x^{2}-2 x \cos \frac{4 \pi}{n}+1\right] \\ & \cdots\left[x^{2}-2 x \cos \frac{(n-2) \pi}{n}+1\right]=(x-1)(x+1) \prod_{k=1}^{\frac{n-2}{2}}\left(x^{2}-2 x \cos \frac{2 k \pi}{n}+1\right) . \end{aligned}

\blacksquare

\blacktriangleleft

【题22

由行列式定义可知, A=j1jn(1)τ(j1jn)a1j1anjjn=(1)τ(k1kn)|A|=\sum_{j_{1} \cdots j_{n}}(-1)^{\tau\left(j_{1} \cdots j_{n}\right)} a_{1 j_{1}} \cdots a_{n j j_{n}}=(-1)^{\tau\left(k_{1} \cdots k_{n}\right)} , 其中 a1k1==ankn=10a_{1 k_{1}}=\cdots=a_{n k_{n}}=1 \neq 0 . 当 AA 取遍 Γ\Gamma 中所有矩阵时, k1knk_{1} \cdots k_{n} 就取遍了所有 nn 级排列, 其中奇、偶排列各占一半, 所以 AΓA=0.\sum_{A \in \Gamma}|A|=0.\blacksquare


2022.9.9

请从以下题目中任选一题作答

【题11

01lnxln(1x)dx.\int_{0}^{1} \ln x \cdot \ln (1-x) d x.\blacktriangleright

【题22

设有行列式

Dn=11111111111111111111D_{n}=\left|\begin{array}{cccccc} 1 & -1 & -1 & \cdots & -1 & -1 \\ 1 & 1 & -1 & \cdots & -1 & -1 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 1 & 1 & 1 & \cdots & 1 & -1 \\ 1 & 1 & 1 & \cdots & 1 & 1 \end{array}\right|

求其展开式的正项总数..\blacktriangleright

\blacktriangleleft

【题11

01lnxln(1x)dx=01(lnxn=1xnn)dx=n=1xn+1n(n+1)lnx01+n=1xn+1n(n+1)201=n=11n(n+1)2=n=11n(n+1)n=11(n+1)2=1(π261)=2π26..\begin{aligned} \int_{0}^{1} \ln x \cdot \ln (1-x) \mathrm{d} x &=-\int_{0}^{1}\left(\ln x \sum_{n=1}^{\infty} \frac{x^{n}}{n}\right) \mathrm{d} x \\ &=\left.\sum_{n=1}^{\infty} \frac{x^{n+1}}{n(n+1)} \ln x\right|_{0} ^{1}+\left.\sum_{n=1}^{\infty} \frac{x^{n+1}}{n(n+1)^{2}}\right|_{0} ^{1}=\sum_{n=1}^{\infty} \frac{1}{n(n+1)^{2}} \\ &=\sum_{n=1}^{\infty} \frac{1}{n(n+1)}-\sum_{n=1}^{\infty} \frac{1}{(n+1)^{2}}=1-\left(\frac{\pi^{2}}{6}-1\right)=2-\frac{\pi^{2}}{6} . \end{aligned}.

\blacksquare

\blacktriangleleft

【题22

首先, 将第 nn 行分别加到其余各行, 可得

Dn=20000220002222011111=2n1D_{n}=\left|\begin{array}{cccccc} 2 & 0 & 0 & \cdots & 0 & 0 \\ 2 & 2 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 2 & 2 & 2 & \cdots & 2 & 0 \\ 1 & 1 & 1 & \cdots & 1 & 1 \end{array}\right|=2^{n-1}

其次, DnD_{n} 的展开式共有 n!n ! 项,其中每项为 11 或者 1-1 .

设正项的个数为 xx , 负项的个数为 yy , 则有 {x+y=n!,xy=Dn=2n1,\left\{\begin{array}{l}x+y=n !, \\ x-y=D_{n}=2^{n-1},\end{array}\right. 解得 x=Dn+n!2=2n1+n!2.x=\frac{D_{n}+n !}{2}=\frac{2^{n-1}+n !}{2}.\blacksquare


2022.9.8

请从以下题目中任选一题作答

【题11

fn(x)f_{n}(x)[a,b][\mathbf{a}, \mathbf{b}] 上连续, n=1,2,n=1,2, \cdots , 且对每个 x[a,b],{fn(x)}x \in[\mathbf{a}, \mathbf{b}],\left\{f_{n}(x)\right\} 有界, 则 [a,b][\mathbf{a}, \mathbf{b}] 中必存在一个小区间使 {fn(x)}\left\{f_{n}(x)\right\} 在其上一致有界。\blacktriangleright

【题22

设集合 S={xxQ,x2<3}\mathbf{S}=\left\{x \mid x \in \mathbb{Q}, x^{2}<3\right\} 。证明:
(1)(1) 集合 SS 没有最大数和最小数;
(2)(2) 集合 SSQ\mathbb{Q} 内没有上确界与下确界。\blacktriangleright

\blacktriangleleft

【题11

反证法。 假设区间 [a,b][\mathrm{a}, \mathrm{b}] 中不存在小区间使 {fn(x)}\left\{f_{n}(x)\right\} 在其上一致有界, 记 区间 [a,b][\mathrm{a}, \mathrm{b}][a0,b0]\left[a_{0}, b_{0}\right] 。则 M>0\forall M>0 , 存在自然数 nnx[a,b]x \in[a, b] , 使 fn(x)>M\left|f_{n}(x)\right|>M

现在取 M=1M=1 , 则存自然数 n1n_{1}x1[a,b]x_{1} \in[a, b] , 使 fn1(x1)>1\left|f_{n_{1}}\left(x_{1}\right)\right|>1 。由于 fn1(x)f_{n_{1}}(x) 在区间 [a0,b0]\left[a_{0}, b_{0}\right] 连续, 存在 [a1,b1][a0,b0]\left[a_{1}, b_{1}\right] \subset\left[a_{0}, b_{0}\right] , 使得 x[a1,b1]\forall x \in\left[a_{1}, b_{1}\right] , 有 fn1(x)>1\left|f_{n_{1}}(x)\right|>1

现在取 M=2M=2 , 则存自然数 n2>n1n_{2}>n_{1}x2[a1,b1]x_{2} \in\left[a_{1}, b_{1}\right] , 使 fn2(x2)>2\left|f_{n_{2}}\left(x_{2}\right)\right|>2 。由于 fn2(x)f_{n_{2}}(x) 在区间 [a1,b1]\left[a_{1}, b_{1}\right] 连续, 存在 [a2,b2][a1,b1]\left[a_{2}, b_{2}\right] \subset\left[a_{1}, b_{1}\right] , 使得 x[a2,b2]\forall x \in\left[a_{2}, b_{2}\right] , 有 fn2(x)>2,\left|f_{n_{2}}(x)\right|>2, \ldots , 这样可得到区间序列 {[ak,bk]}\left\{\left[a_{k}, b_{k}\right]\right\} 以及自然数序列 {nk}\left\{n_{k}\right\} , 使得:

(1)[ak,bk][ak1,bk1],k=1,2,(1) \left[a_{k}, b_{k}\right] \subset\left[a_{k-1}, b_{k-1}\right], \quad k=1,2, \cdots

(2)x[ak,bk],fnk(x)>k.(2) \forall x \in\left[a_{k}, b_{k}\right],\left|f_{n_{k}}(x)\right|>k.

所以存在 x0k=0[ak,bk][a,b]x_{0} \in \bigcap_{k=0}^{\infty}\left[a_{k}, b_{k}\right] \subset[a, b] , 使得 kN,fnk(x0)>k\forall k \in N,\left|f_{n_{k}}\left(x_{0}\right)\right|>k , 这和条件: 对每个 x[ab b],{fn(x)}x \in[\mathrm{a} b \mathrm{~b}],\left\{f_{n}(x)\right\} 有界矛盾。所以, 区间 [a,b][\mathrm{a}, \mathrm{b}] 中存在小区间使 {fn(x)}\left\{f_{n}(x)\right\} 在其上一 致有界。 \blacksquare

\blacktriangleleft

【题22

(1)(1) 反证: 假设 ySy \in S 为最大数, 则 y2<3y^{2}<3 。显然, 2<y<2-2<y<2

由于 limn(4n+1n2)=0\displaystyle\lim _{n \rightarrow \infty}\left(\frac{4}{n}+\frac{1}{n^{2}}\right)=0 。所以当 nn 充分大时, 4n+1n2<3y2\frac{4}{n}+\frac{1}{n^{2}}<3-y^{2}

于是 (y+1n)2=y2+2ny+1n2<y2+4n+1n2<y2+3y2=3\left(y+\frac{1}{n}\right)^{2}=y^{2}+\frac{2}{n} y+\frac{1}{n^{2}}<y^{2}+\frac{4}{n}+\frac{1}{n^{2}}<y^{2}+3-y^{2}=3 ,

而且 yQ,1nQy \in Q, \frac{1}{n} \in Q , 故 y+1nQy+\frac{1}{n} \in Q 。所以由上面的不等式可知: y+1nSy+\frac{1}{n} \in S

这与 ySy \in S 为最大数矛盾。所以 SS 中没有最大数。同理, SS 中没有最小数。

(2)(2) 反证: 假设 SSQQ 中有上确界, 设为 yy , 则 yQy \in Q 。由上确界的定义可知: y23y^{2} \leq 3 。 \quad

(1)(1) 的证明可知: y2<3y^{2}<3 不成立。因此, y2=3y^{2}=3 。由于 yQy \in Q , 因此,

y=nmy=\frac{n}{m} , 其中 m,nm, n 为互质的整数。于是, n2m2=3\frac{n^{2}}{m^{2}}=3n2=3m2n^{2}=3 m^{2}

可知, nn33 的倍数, 设 n=3k,kZn=3 k, k \in Z 。于是 9k2=3m29 k^{2}=3 m^{2}m2=3k2m^{2}=3 k^{2} 。可知, mm 也为 33 的倍数。

这与 m,nm, n 为互质的整数矛盾。故 y23y^{2} \leq 3 不成立, 即 SSQQ 中没有上确界。同理, SSQQ 中没有下确界。\blacksquare


2022.9.7

请从以下题目中任选一题作答

【题11

A,BA, B 均为 nn 阶方阵, 证明:

ABBA=A+BAB.\left|\begin{array}{ll} A & B \\ B & A \end{array}\right|=|A+B| \cdot|A-B|.\blacktriangleright

【题22

求出过原点且和椭球面 4x2+5y2+6z2=14 x^{2}+5 y^{2}+6 z^{2}=1 的交线为一个圆周的所有平面..\blacktriangleright

\blacktriangleleft

【题11

因为 (EEOE)(ABBA)(EEOE)=(A+BOBAB)\left(\begin{array}{ll}E & E \\ O & E\end{array}\right)\left(\begin{array}{cc}A & B \\ B & A\end{array}\right)\left(\begin{array}{cc}E & -E \\ O & E\end{array}\right)=\left(\begin{array}{cc}A+B & O \\ B & A-B\end{array}\right) ,

所以

ABBA=EEOEABBAEEOE=A+BOBAB=A+BAB.\left|\begin{array}{cc} A & B \\ B & A \end{array}\right|=\left|\begin{array}{cc} E & E \\ O & E \end{array}\right|\left|\begin{array}{cc} A & B \\ B & A \end{array}\right|\left|\begin{array}{cc} E & -E \\ O & E \end{array}\right|=\left|\begin{array}{cc} A+B & O \\ B & A-B \end{array}\right|=|A+B| \cdot|A-B|.\blacksquare

\blacktriangleleft

【题22

由题意可知, 所述圆周是由以原点为球心的球面

x2+y2+z2=R2x^{2}+y^{2}+z^{2}=R^{2}

和椭球面

4x2+5y2+6z2=14 x^{2}+5 y^{2}+6 z^{2}=1

的交线. 由上面两个方程确定的平面, 即所求的平面, 也必包含上述圆周. 联立此二式, 得

(41R2)x2+(51R2)y2+(61R2)z2=0.\left(4-\frac{1}{R^{2}}\right) x^{2}+\left(5-\frac{1}{R^{2}}\right) y^{2}+\left(6-\frac{1}{R^{2}}\right) z^{2}=0 .

易见, 当 R2=1/5R^{2}=1/5 时, 有 x2z2=0x^{2}-z^{2}=0 , 这是两相交平面 x=z,x+z=0x=z, x+z=0 , 即为所求平面..\blacksquare


2022.9.6

请从以下题目中任选一题作答

【题11

下面的说法可以用作 limxx0f(x)=A\displaystyle\lim _{x \rightarrow x_{0}} f(x)=A 的定义吗? 正确的给以证明, 不正确的举例说明。

 “ ε>0,δ>0,x:0<xx0<δ, 有 f(x)A<εδ ”。 \text { “ } \forall \varepsilon>0, \exists \delta>0, \forall x: 0<\left|x-x_{0}\right|<\delta \text {, 有 }|f(x)-A|<\varepsilon \delta \text { ”。 }\blacktriangleright

【题22

f(x)f(x)[a,b][a, b] 上连续, 且 f(x)f(x)[a,b][a, b] 上每点处都取极值, 则 f(x)f(x) 恒等于某个常数。\blacktriangleright

\blacktriangleleft

【题11

不能。

考虑f(x)={1,x 为有理数 0,x 为无理数 ,x0Rf(x)=\{\begin{array}{ll}1, & x \text { 为有理数 } \\ 0, & x \text { 为无理数 }\end{array}, \forall x_{0} \in R, limxx0f(x)\displaystyle\lim _{x \rightarrow x_{0}} f(x). 不存在。

A=0,ε>0A=0, \forall \varepsilon>0 , 取 δ=2/ε,0<xx0<δ\delta=2 / \varepsilon, 0<\left|x-x_{0}\right|<\delta , 有 f(x)A=f(x)<εδ=2.|f(x)-A|=|f(x)|<\varepsilon \delta=2.\blacksquare

\blacktriangleleft

【题22

若不, 有 a1,b1[a,b],a1b1,f(a1)f(b1)a_{1}, b_{1} \in[a, b], a_{1} \neq b_{1}, f\left(a_{1}\right) \neq f\left(b_{1}\right)

f(a1)<f(b1),a1<b1,a2,b2,a2<b2f\left(a_{1}\right)<f\left(b_{1}\right), a_{1}<b_{1} , \exists a_{2}, b_{2}, a_{2}<b_{2} , 使 f(a1)<f(a2)<f(b2)<f(b1),b2a2<12(b1a1)a3,b3,a3<b3f\left(a_{1}\right)<f\left(a_{2}\right)<f\left(b_{2}\right)<f\left(b_{1}\right), \quad b_{2}-a_{2}<\frac{1}{2}\left(b_{1}-a_{1}\right) \exists a_{3}, b_{3}, a_{3}<b_{3} , 使 f(a2)<f(a3)<f(b3)<f(b2),b3a3<122(b2a2)f\left(a_{2}\right)<f\left(a_{3}\right)<f\left(b_{3}\right)<f\left(b_{2}\right), b_{3}-a_{3}<\frac{1}{2^{2}}\left(b_{2}-a_{2}\right)

(i)[an,bn][an+1,bn+1](i) \left[a_{n}, b_{n}\right] \supset\left[a_{n+1}, b_{n+1}\right] ;

(ii)bnan0(ii) b_{n}-a_{n} \rightarrow 0 ;

(iii)f(an)(iii) f\left(a_{n}\right) 递增, f(bn)f\left(b_{n}\right) 递增, f(an)<f(bn)f\left(a_{n}\right)<f\left(b_{n}\right)

由闭区间套定理,

x0[an,bn],liman=limbn=x0(a,b),f(an)<f(x0)<f(bn)x0\exists x_{0} \in\left[a_{n}, b_{n}\right], \quad \lim a_{n}=\lim b_{n}=x_{0} \in(a, b), f\left(a_{n}\right)<f\left(x_{0}\right)<f\left(b_{n}\right) \Rightarrow x_{0} 不是 f(x)f(x) 的局部极值, 矛盾。\blacksquare


2022.9.5

请从以下题目中任选一题作答

【题11

证明: (x2+x+1)(x3m+x3n+1+x3p+2)\left(x^{2}+x+1\right) \mid\left(x^{3 m}+x^{3 n+1}+x^{3 p+2}\right. ) (其中 m,n,pm, n, p 是三个任意的正整数) ..\blacktriangleright

【题22

a>1a>1 , 求无穷级数的和

s=n=02na2n+1.s=\displaystyle\sum_{n=0}^{\infty} \frac{2^{n}}{a^{2^{n}}+1} .\blacktriangleright

\blacktriangleleft

【题11

多项式 x2+x+1x^{2}+x+1 的根为 ω1=1+3i2,ω2=13i2\omega_{1}=\frac{-1+\sqrt{3} \mathrm{i}}{2}, \omega_{2}=\frac{-1-\sqrt{3} \mathrm{i}}{2} , 即 x2+x+1=(xω1)(xω2)x^{2}+x+1=\left(x-\omega_{1}\right)\left(x-\omega_{2}\right) .

ωi31=(ωi1)(ωi2+ωi+1)=0(i=1,2),\omega_{i}^{3}-1=\left(\omega_{i}-1\right)\left(\omega_{i}^{2}+\omega_{i}+1\right)=0 \quad(i=1,2),

可知 ωi3=1\omega_{i}^{3}=1 , 从而 ωi3m=ωi3n=ωi3p=1\omega_{i}^{3 m}=\omega_{i}^{3 n}=\omega_{i}^{3 p}=1 .
f(x)=x3m+x3n+1+x3p+2f(x)=x^{3 m}+x^{3 n+1}+x^{3 p+2} , 则有 f(ωi)=ωi3m+ωi3n+1+ωi3p+2=1+ωi+ωi2=0f\left(\omega_{i}\right)=\omega_{i}^{3 m}+\omega_{i}^{3 n+1}+\omega_{i}^{3 p+2}=1+\omega_{i}+\omega_{i}^{2}=0 所以可得 (xωi)f(x)(i=1,2)\left(x-\omega_{i}\right) \mid f(x)(i=1,2) . 又因为 xω1x-\omega_{1}xω2x-\omega_{2} 互素, 所以 (xω1)(xω2)f(x)\left(x-\omega_{1}\right)\left(x-\omega_{2}\right) \mid f(x) ,
(x2+x+1)f(x).\left(x^{2}+x+1\right) \mid f(x).\blacksquare

\blacktriangleleft

【题22

对于 a>1a>1 , 由于

2na2n+1=2n(a2n1)a2n+11=2n(a2n+1)2n+1a2n+11=2na2n12n+1a2n+11\frac{2^{n}}{a^{2^n}+1}=\frac{2^{n}\left(a^{2^{n}}-1\right)}{a^{2^{n+1}}-1}=\frac{2^{n}\left(a^{2^{n}}+1\right)-2^{n+1}}{a^{2^{n+1}}-1}=\frac{2^{n}}{a^{2^{n}}-1}-\frac{2^{n+1}}{a^{2^{n+1}}-1}

所以

s=n=0(2na2n12n+1a2n+11)=1a1.s=\displaystyle\sum_{n=0}^{\infty}\left(\frac{2^{n}}{a^{2^{n}}-1}-\frac{2^{n+1}}{a^{2^{n+1}}-1}\right)=\frac{1}{a-1} .\blacksquare


2022.9.4

请从以下题目中任选一题作答

【题11

an=0π2tsinntsint3 dta_{n}=\int_{0}^{\frac{\pi}{2}} t\left|\frac{\sin n t}{\sin t}\right|^{3} \mathrm{~d} t , 证明 n=11an\displaystyle\sum_{n=1}^{\infty} \frac{1}{a_{n}} 发散..\blacktriangleright

【题22

证明:
非常数的一元多项式函数不是周期函数..\blacktriangleright

\blacktriangleleft

【题11

0π2tsinntsint3 dt=0πntsinntsint3 dt+πnπ2tsinntsint3 dt=I1+I2,\int_{0}^{\frac{\pi}{2}} t\left|\frac{\sin n t}{\sin t}\right|^{3} \mathrm{~d} t=\int_{0}^{\frac{\pi}{n}} t\left|\frac{\sin n t}{\sin t}\right|^{3} \mathrm{~d} t+\int_{\frac{\pi}{n}}^{\frac{\pi}{2}} t\left|\frac{\sin n t}{\sin t}\right|^{3} \mathrm{~d} t=I_{1}+I_{2} ,

I1=0πntsinntsint3 dt<n30πnt dt=π2n2,I_{1}=\int_{0}^{\frac{\pi}{n}} t\left|\frac{\sin n t}{\sin t}\right|^{3} \mathrm{~d} t<n^{3} \int_{0}^{\frac{\pi}{n}} t \mathrm{~d} t=\frac{\pi^{2} n}{2},

I2=πnπ2tsinntsint3 dt<πnπ2t(π2t)3 dt=π38πnπ2 d(1t)=π38(nπ2π)<π2n8I_{2}=\int_{\frac{\pi}{n}}^{\frac{\pi}{2}} t\left|\frac{\sin n t}{\sin t}\right|^{3} \mathrm{~d} t<\int_{\frac{\pi}{n}}^{\frac{\pi}{2}} t\left(\frac{\pi}{2 t}\right)^{3} \mathrm{~d} t=-\frac{\pi^{3}}{8} \int_{\frac{\pi}{n}}^{\frac{\pi}{2}} \mathrm{~d}\left(\frac{1}{t}\right)=\frac{\pi^{3}}{8}\left(\frac{n}{\pi}-\frac{2}{\pi}\right)<\frac{\pi^{2} n}{8}

因此, 1an>1π2n\frac{1}{a_{n}}>\frac{1}{\pi^{2} n} , 由此得到 n=11an\displaystyle\sum_{n=1}^{\infty} \frac{1}{a_{n}} 发散..\blacksquare

\blacktriangleleft

【题22

假设 deg(f(x))1\operatorname{deg}(f(x)) \geqslant 1 . 若存在常数 c0c \neq 0 , 使得对任意的 xx , 均有 f(x+c)=f(x)f(x+c)= f(x) 成立. 设 α\alphaf(x)f(x)11 个根, 则 α+c,α+2c,α+3c,\alpha+c, \alpha+2 c, \alpha+3 c, \cdots 都是 f(x)f(x) 的根. 但 f(x)f(x) 的根的个数不超过 deg(f(x))\operatorname{deg}(f(x)) , 因此存在不同的正整数 s,ts, t , 使得 α+sc=α+tc\alpha+s c= \alpha+t c , 即 (st)c=0c=0(s-t) c=0 \Rightarrow c=0 , 矛盾. 故结论成立..\blacksquare


2022.9.3

请从以下题目中任选一题作答

【题11

考虑 01sin(x+1x)xαdx\int_{0}^{1} \frac{\sin \left(x+\frac{1}{x}\right)}{x^{\alpha}} \mathrm{d} x1+sin(x+1x)xαdx\int_{1}^{+\infty} \frac{\sin \left(x+\frac{1}{x}\right)}{x^{\alpha}} \mathrm{d} x 的敛散性..\blacktriangleright

【题22

假设 f1(x)f_{1}(x)f2(x)f_{2}(x) 为次数不超过 33 的首项系数为 11 的互异多项式, 假设 x4+x2+1x^{4}+x^{2}+1 整除 f1(x3)+x4f2(x3)f_{1}\left(x^{3}\right)+x^{4} f_{2}\left(x^{3}\right) , 试求 f1(x)f_{1}(x)f2(x)f_{2}(x) 的最大公因式..\blacktriangleright

\blacktriangleleft

【题22

由于 x4+x2+1=(x2+1)2x2=(x2+x+1)(x2x+1)x^{4}+x^{2}+1=\left(x^{2}+1\right)^{2}-x^{2}=\left(x^{2}+x+1\right)\left(x^{2}-x+1\right) . 这里假设它的四个根分别为 ω1,ω2,ε1,ε2\omega_{1}, \omega_{2}, \varepsilon_{1}, \varepsilon_{2}

ω1=1+3i2,ω2=13i2,ε1=1+3i2,ε2=13i2.\omega_{1}=\frac{-1+\sqrt{3} \mathrm{i}}{2}, \quad \omega_{2}=\frac{-1-\sqrt{3} \mathrm{i}}{2}, \quad \varepsilon_{1}=\frac{1+\sqrt{3} \mathrm{i}}{2}, \quad \varepsilon_{2}=\frac{1-\sqrt{3} \mathrm{i}}{2} .

f1(x3)+x4f2(x3)=(x4+x2+1)g(x)f_{1}\left(x^{3}\right)+x^{4} f_{2}\left(x^{3}\right)=\left(x^{4}+x^{2}+1\right) g(x) , 于是有方程组

{f1(1)+ω1f2(1)=0,f1(1)+ω2f2(1)=0 与 {f1(1)ε1f2(1)=0,f1(1)ε2f2(1)=0,\left\{\begin{array} { l } { f _ { 1 } ( 1 ) + \omega _ { 1 } f _ { 2 } ( 1 ) = 0 , } \\ { f _ { 1 } ( 1 ) + \omega _ { 2 } f _ { 2 } ( 1 ) = 0 } \end{array} \quad \text { 与 } \left\{\begin{array}{l} f_{1}(-1)-\varepsilon_{1} f_{2}(-1)=0, \\ f_{1}(-1)-\varepsilon_{2} f_{2}(-1)=0, \end{array}\right.\right.

解方程组得

f1(1)=f2(1)=0,f1(1)=f2(1)=0,f_{1}(1)=f_{2}(1)=0, \quad f_{1}(-1)=f_{2}(-1)=0,

于是有 (x+1)(x1)f1(x),(x+1)(x1)f2(x)(x+1)(x-1)\left|f_{1}(x),(x+1)(x-1)\right| f_{2}(x) .
f1(x)f_{1}(x)f2(x)f_{2}(x) 为互异的次数不超过 33 的首项系数为 11 的多项式, 所以有

(f1(x),f2(x))=x21.\left(f_{1}(x), f_{2}(x)\right)=x^{2}-1.\blacksquare


2022.9.2

请从以下题目中任选一题作答

【题11

f(x)f(x) 是二次可微的函数, 满足 f(0)=1,f(0)=0f(0)=1, f^{\prime}(0)=0 , 且对任意的 x0x \geqslant 0

f(x)5f(x)+6f(x)0f^{\prime \prime}(x)-5 f^{\prime}(x)+6 f(x) \geqslant 0 .

证明:对每个 x0x \geqslant 0 , 都有 f(x)3e2x2e3x.f(x) \geqslant 3 \mathrm{e}^{2 x}-2 \mathrm{e}^{3 x}.\blacktriangleright

【题22

f(x)f(x)aa 点可导, 且 {xn}\left\{x_{n}\right\} 单调递增趋于 aa,{yn}\left\{y_{n}\right\} 单调递减趋于 aa , 证明:

limnf(yn)f(xn)ynxn=f(a).\displaystyle\lim _{n \rightarrow \infty} \frac{f\left(y_{n}\right)-f\left(x_{n}\right)}{y_{n}-x_{n}}=f^{\prime}(a).\blacktriangleright

\blacktriangleleft

【题11

首先 [f(x)2f(x)]3[f(x)2f(x)]0\left[f^{\prime \prime}(x)-2 f^{\prime}(x)\right]-3\left[f^{\prime}(x)-2 f(x)\right] \geqslant 0 , 令 g(x)=f(x)2f(x)g(x)=f^{\prime}(x)-2 f(x) , 则 g(x)3g(x)0g^{\prime}(x)-3 g(x) \geqslant 0 , 因此 (g(x)e3x)0\left(g(x) \mathrm{e}^{-3 x}\right)^{\prime} \geqslant 0 , 所以

g(x)e3xg(0)=2, 或者 f(x)2f(x)2e3xg(x) \mathrm{e}^{-3 x} \geqslant g(0)=-2 \text {, 或者 } f^{\prime}(x)-2 f(x) \geqslant-2 \mathrm{e}^{3 x}

进一步, 有 (f(x)e2x)2ex\left(f(x) \mathrm{e}^{-2 x}\right)^{\prime} \geqslant-2 \mathrm{e}^{x} , 即 (f(x)e2x+2ex)0\left(f(x) \mathrm{e}^{-2 x}+2 \mathrm{e}^{x}\right)^{\prime} \geqslant 0 , 所以 f(x)e2x+2exf(0)+2=3f(x) \mathrm{e}^{-2 x}+2 \mathrm{e}^{x} \geqslant f(0)+2=3 , 即 f(x)3e2x2e3x.f(x) \geqslant 3 \mathrm{e}^{2 x}-2 \mathrm{e}^{3 x}.\blacksquare

\blacktriangleleft

【题22

f(yn)f(xn)ynxn=f(yn)f(a)+f(a)f(xn)ynxn=λnf(yn)f(a)yna+(1λn)f(xn)f(a)xna,\begin{aligned} \frac{f\left(y_{n}\right)-f\left(x_{n}\right)}{y_{n}-x_{n}} &=\frac{f\left(y_{n}\right)-f(a)+f(a)-f\left(x_{n}\right)}{y_{n}-x_{n}} \\ &=\lambda_{n} \frac{f\left(y_{n}\right)-f(a)}{y_{n}-a}+\left(1-\lambda_{n}\right) \frac{f\left(x_{n}\right)-f(a)}{x_{n}-a}, \end{aligned}

其中 λn=ynaynxn\lambda_{n}=\frac{y_{n}-a}{y_{n}-x_{n}} , 易知 ε>0,NN+\forall \varepsilon>0, \exists N \in \mathbf{N}_{+} , 当 n>Nn>\mathbf{N} 时,

f(yn)f(xn)ynxnf(a)λnf(yn)f(a)ynaf(a)+(1λn)f(xn)f(a)xnaf(a)<λnε+(1λn)ε=ε.\begin{aligned} \left|\frac{f\left(y_{n}\right)-f\left(x_{n}\right)}{y_{n}-x_{n}}-f^{\prime}(a)\right| & \leqslant \lambda_{n}\left|\frac{f\left(y_{n}\right)-f(a)}{y_{n}-a}-f^{\prime}(a)\right|+\left(1-\lambda_{n}\right)\left|\frac{f\left(x_{n}\right)-f(a)}{x_{n}-a}-f^{\prime}(a)\right| \\ &<\lambda_{n} \varepsilon+\left(1-\lambda_{n}\right) \varepsilon=\varepsilon .\blacksquare \end{aligned}


2022.9.1

请从以下题目中任选一题作答

【题11

f(x)f(x)[1,+)[1,+\infty) 一致连续, 证明 f(x)x\frac{f(x)}{x}[1,+)[1,+\infty) 有界 ..\blacktriangleright

【题22

ff[0,1][0,1] 上有三阶连续导数, f(0)=1,f(1)=2,f(12)=0f(0)=1, f(1)=2, f^{\prime}\left(\frac{1}{2}\right)=0 , 证明: 至少存在一点 ξ(0,1)\xi \in(0,1) , 使得 f(ξ)24.\left|f^{\prime \prime \prime}(\xi)\right| \geqslant 24.\blacktriangleright

\blacktriangleleft

【题11

由于 f(x)f(x)[1,+)[1,+\infty) 一致连续, 对于 ε0=1\varepsilon_{0}=1 , 存在 δ0>0\delta_{0}>0 任意的 x1,x2[1,+),x1x2δ0x_{1}, x_{2} \in[1,+\infty) , \left|x_{1}-x_{2}\right| \leq \delta_{0} , 有 f(x1)f(x2)ε0=1\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \leq \varepsilon_{0}=1
对于任意的 x[1,+)x \in[1,+\infty) , 存在整数 nn , 使得 nx1δ0<n+1n \leq \frac{x-1}{\delta_{0}}<n+11+nδ0x<1+(n+1)δ01+n \delta_{0} \leq x<1+(n+1) \delta_{0} ,

f(x)f(1)xf(1+δ0)f(1)+f(1+2δ0)f(1+δ0)++f(1+nδ0)f(1+(n1)δ0)+f(x)f(1+nδ0)x\left|\frac{f(x)-f(1)}{x}\right| \leq \frac{\left|f\left(1+\delta_{0}\right)-f(1)\right|+\left|f\left(1+2 \delta_{0}\right)-f\left(1+\delta_{0}\right)\right|+\cdots+\left|f\left(1+n \delta_{0}\right)-f\left(1+(n-1) \delta_{0}\right)\right|+\left|f(x)-f\left(1+n \delta_{0}\right)\right|}{x}
n+1xx1δ0+1x1δ0+1f(x)xf(x)f(1)+f(1)x1δ0+1+f(1).\leq \frac{n+1}{x} \leq \frac{\frac{x-1}{\delta_{0}}+1}{x} \leq \frac{1}{\delta_{0}}+1 \left|\frac{f(x)}{x}\right| \leq \frac{|f(x)-f(1)|+f(1)}{x} \leq \frac{1}{\delta_{0}}+1+|f(1)|.\blacksquare

\blacktriangleleft

【题22

利用 TaylorTaylor 公式把 f(0),f(1)f(0), f(1) 在点 x=12x=\frac{1}{2} 处展开得到

f(0)=f(12)+f(12)(012)+12f(12)(012)2+16f(ξ1)(012)3,ξ1(0,12),f(1)=f(12)+f(12)(112)+12f(12)(112)2+16f(ξ2)(112)3,ξ2(12,1).\begin{array}{l} f(0)=f\left(\frac{1}{2}\right)+f^{\prime}\left(\frac{1}{2}\right)\left(0-\frac{1}{2}\right)+\frac{1}{2} f^{\prime \prime}\left(\frac{1}{2}\right)\left(0-\frac{1}{2}\right)^{2}+\frac{1}{6} f^{\prime \prime \prime}\left(\xi_{1}\right)\left(0-\frac{1}{2}\right)^{3}, \quad \xi_{1} \in\left(0, \frac{1}{2}\right), \\ f(1)=f\left(\frac{1}{2}\right)+f^{\prime}\left(\frac{1}{2}\right)\left(1-\frac{1}{2}\right)+\frac{1}{2} f^{\prime \prime}\left(\frac{1}{2}\right)\left(1-\frac{1}{2}\right)^{2}+\frac{1}{6} f^{\prime \prime \prime}\left(\xi_{2}\right)\left(1-\frac{1}{2}\right)^{3}, \quad \xi_{2} \in\left(\frac{1}{2}, 1\right) . \end{array}

两式相减并注意到 f(0)=1,f(1)=2,f(12)=0f(0)=1, f(1)=2, f^{\prime}\left(\frac{1}{2}\right)=0 , 就有 f(ξ1)+f(ξ2)=48f^{\prime \prime \prime}\left(\xi_{1}\right)+f^{\prime \prime \prime}\left(\xi_{2}\right)=48 , 这表明至少存在一点 ξ(0,1)\xi \in(0,1) , 使得 f(ξ)24.\left|f^{\prime \prime \prime}(\xi)\right| \geqslant 24.\blacksquare


2022.8

2022.8.31

请从以下题目中任选一题作答

【题11

f(x)f(x)[a,b][a, b] 上连续, 在 (a,b)(a, b) 内可导, 且 f(a)f(b)>0,f(a)f(a+b2)<0f(a) \cdot f(b)>0, f(a) · f\left(\frac{a+b}{2}\right)<0 , 试证: 至少有一点 ξ(a,b)\xi \in(a, b) , 使 f(ξ)=f(ξ).f^{\prime}(\xi)=f(\xi).\blacktriangleright

【题22

f(x)=2x(1x),xRf(x)=2 x(1-x), x \in R . 定义 fn=ffnf^{n}=\overbrace{f \circ \cdots \circ f}^{n}

(1)(1)limn01fn(x)dx\displaystyle\lim _{n \rightarrow \infty} \int_{0}^{1} f^{n}(x) d x ;

(2)(2) 计算 01fn(x)dx.\int_{0}^{1} f^{n}(x) d x.\blacktriangleright

\blacktriangleleft

【题11

F(x)=f(a)exf(x)F(x)=f(a) \mathrm{e}^{-x} f(x) , 则

F(a)=f2(a)ea>0,F(a+b2)=f(a)f(a+b2)ea+b2<0,F(b)=f(a)f(b)eb>0.\begin{aligned} F(a) &=f^{2}(a) \mathrm{e}^{-a}>0, \\ F\left(\frac{a+b}{2}\right) &=f(a) f\left(\frac{a+b}{2}\right) \mathrm{e}^{\frac{a+b}{2}}<0, \\ F(b) &=f(a) f(b) \mathrm{e}^{-b}>0 . \end{aligned}

所以由零点定理知, 存在 ξ1(a,a+b2),ξ2(a+b2,b)\xi_{1} \in\left(a, \frac{a+b}{2}\right), \xi_{2} \in\left(\frac{a+b}{2}, b\right) , 使 F(ξ1)=0,F(ξ2)=0F\left(\xi_{1}\right)=0, F\left(\xi_{2}\right)=0 , 再在区间 [ξ1,ξ2]\left[\xi_{1}, \xi_{2}\right] 上使用 Rolle\mathbf{Rolle} 定理即得结果..\blacksquare

\blacktriangleleft

【题22

1(1) 取定 x=x0(0,1)x=x_{0} \in(0,1) . 令 xn=fn(x0),n=1,2,x_{n}=f^{n}\left(x_{0}\right), n=1,2, \cdots 则得到 x1(0,12],x1f(x1)12x_{1} \in\left(0, \frac{1}{2}\right], x_{1} \leq f\left(x_{1}\right) \leq \frac{1}{2} , 进一 步利用数学归纳法可得到 xnf(xn)12x_{n} \leq f\left(x_{n}\right) \leq \frac{1}{2} , 这样数列 {xn}\left\{x_{n}\right\} 为一个有界单调非减的数列, 从而极 限存在, 假设 limnxn=l\lim _{n \rightarrow \infty} x_{n}=l , 并且 {xn}\left\{x_{n}\right\} 满足 xn+1=2xn(1xn)x_{n+1}=2 x_{n}\left(1-x_{n}\right) , 上式两边取极限得到 l=2l(1l)l=2 l(1-l) , 从而 l=0l=0 或者 l=12l=\frac{1}{2} , 利用 {xn}\left\{x_{n}\right\} 为一个单调非减的数列得到 l=12l=\frac{1}{2} . 从而利用单调收敛定理可以得到 limn01fn(x)dx=12\lim _{n \rightarrow \infty} \int_{0}^{1} f^{n}(x) d x=\frac{1}{2}

2(2)因为 f(x)=2x(1x)=122(x12)2f(x)=2 x(1-x)=\frac{1}{2}-2\left(x-\frac{1}{2}\right)^{2} , 利用数学归纳法可证 fn(x)=1222n1(x12)2nf^{n}(x)=\frac{1}{2}-2^{2^{n}-1}\left(x-\frac{1}{2}\right)^{2^{n}}

假设上式对于 n=kn=k 成立, 下证

fk+1(x)=fk(f(x))=1222k1((122(x12)2)12)2kf^{k+1}(x)=f^{k}(f(x))=\frac{1}{2}-2^{2^{k}-1}\left(\left(\frac{1}{2}-2\left(x-\frac{1}{2}\right)^{2}\right)-\frac{1}{2}\right)^{2^{k}}

=1222k1(2(x12)2)2k=1222k+11(x12)2k+1=\frac{1}{2}-2^{2^{k}-1}\left(-2\left(x-\frac{1}{2}\right)^{2}\right)^{2^{k}}=\frac{1}{2}-2^{2^{k+1}-1}\left(x-\frac{1}{2}\right)^{2^{k+1}}

从而可以计算得到

01fn(x)dx=[12x22n12n+1(x12)2n+1]01=1212(2n+1).\int_{0}^{1} f^{n}(x) d x=\left.\left[\frac{1}{2} x-\frac{2^{2^{n}-1}}{2^{n}+1}\left(x-\frac{1}{2}\right)^{2^{n}+1}\right]\right|_{0} ^{1}=\frac{1}{2}-\frac{1}{2\left(2^{n}+1\right)}.\blacksquare


2022.8.30

请从以下题目中任选一题作答

【题11】求使不等式 (1+1n)n+αe(1+1n)n+β\left(1+\frac{1}{n}\right)^{n+\alpha} \leq e \leq\left(1+\frac{1}{n}\right)^{n+\beta} 对所有的自然数 nn 都成立的最大的数 α\alpha 和最小的数 β\beta ..\blacktriangleright

【题22

已知 33 阶实矩阵 A=(aij)A=\left(a_{i j}\right) 满足条件 aij=Aij(i,j=1,2,3)a_{i j}=A_{i j}(i, j=1,2,3) , 其中 AijA_{i j}aija_{i j} 的代数余子式, 且 a33=1a_{33}=-1 . 求解:

(1)A(1) |A| ;

(2)(2) 方程组 A(x1x2x3)=(001)A\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right) 的解..\blacktriangleright

\blacktriangleleft

【题11

已知不等式等价于 (n+α)ln(1+1n)1(n+β)ln(1+1n)(n+\alpha) \ln \left(1+\frac{1}{n}\right) \leqslant 1 \leqslant(n+\beta) \ln \left(1+\frac{1}{n}\right) . 所以 α1ln(1+1n)nβ\alpha \leqslant \frac{1}{\ln \left(1+\frac{1}{n}\right)}-n \leqslant \beta , 令 f(x)=1ln(1+x)1x,x[0,1]f(x)=\frac{1}{\ln (1+x)}-\frac{1}{x}, x \in[0,1] , 则

f(x)=1ln2(1+x)+1x2=(1+x)ln2(1+x)x2x2(1+x)ln2(1+x)f^{\prime}(x)=-\frac{1}{\ln ^{2}(1+x)}+\frac{1}{x^{2}}=\frac{(1+x) \ln ^{2}(1+x)-x^{2}}{x^{2}(1+x) \ln ^{2}(1+x)}

再令 g(x)=(1+x)ln2(1+x)x2,x[0,1]g(x)=(1+x) \ln ^{2}(1+x)-x^{2}, x \in[0,1] , 则 g(0)=0g(0)=0 , 且

g(x)=ln2(1+x)+2ln(1+x)2x,g(0)=0,g(x)=2ln(1+x)1+x+21+x2=2[ln(1+x)x]1+x<0,\begin{array}{c} g^{\prime}(x)=\ln ^{2}(1+x)+2 \ln (1+x)-2 x, \quad g^{\prime}(0)=0, \\ g^{\prime \prime}(x)=\frac{2 \ln (1+x)}{1+x}+\frac{2}{1+x}-2=\frac{2[\ln (1+x)-x]}{1+x}<0, \end{array}

g(x)g^{\prime}(x)[0,1][0,1] 上严格单调递减, 所以 g(x)<g(0)=0g^{\prime}(x)<g^{\prime}(0)=0 , 同理, g(x)g(x)[0,1][0,1] 上也, 严柺单调递减, 故 g(x)<g(0)=0g(x)<g(0)=0 , 即 (1+x)ln2(1+x)x2<0(1+x) \ln ^{2}(1+x)-x^{2}<0 , 从而 f(x)<0(0<x1)f^{\prime}(x)<0 \quad(0< x \leqslant 1) , 因此 f(x)f(x)(0,1](0,1] 上也严格单调递掝.
x=1nx=\frac{1}{n} , 则 αf(x)β\alpha \leqslant f(x) \leqslant \beta ,

maxα=limx1[1ln(1+x)1x]=1ln21minβ=limx0+[1ln(1+x)1x]=limx0+xln(1+x)xln(1+x)=limx0+1ln(1+x)+11+x=limx0+11+ln(1+x)+1=12\begin{aligned} \max \alpha&=\lim _{x \rightarrow 1^{-}}\left[\frac{1}{\ln (1+x)}-\frac{1}{x}\right]=\frac{1}{\ln 2}-1 \\ \min \beta &=\lim _{x \rightarrow 0^{+}}\left[\frac{1}{\ln (1+x)}-\frac{1}{x}\right]=\lim _{x \rightarrow 0^{+}} \frac{x-\ln (1+x)}{x \ln (1+x)}=\lim _{x \rightarrow 0^{+}} \frac{1}{\ln (1+x)+\frac{1}{1+x}} \\ &=\lim _{x \rightarrow 0^{+}} \frac{1}{1+\ln (1+x)+1}=\frac{1}{2} \end{aligned}

因此, 使不等式对所有的自然数 nn 都成立的最大的数 α\alpha1ln21\frac{1}{\ln 2}-1 , 最小的数 β\beta12.\frac{1}{2}.\blacksquare

\blacktriangleleft

【题22

aij=Aija_{i j}=A_{i j} , 则 A=A\boldsymbol{A}^{\prime}=\boldsymbol{A}^{*} , 且 AA=AA=AE\boldsymbol{A} \boldsymbol{A}^{\prime}=\boldsymbol{A} \boldsymbol{A}^{*}=|\boldsymbol{A}| \boldsymbol{E} , 两边取行列式, 得

A2=A3,A2(A1)=0|\boldsymbol{A}|^{2}=|\boldsymbol{A}|^{3},|\boldsymbol{A}|^{2}(|\boldsymbol{A}|-1)=0

从而

A=0 或 A=1|\boldsymbol{A}|=0 \text { 或 }|\boldsymbol{A}|=1

A|A| 按第 3 行展开, 得

A=a31A31+a32A32+a33A33=a312+a322+a332|\boldsymbol{A}|=a_{31} A_{31}+a_{32} A_{32}+a_{33} A_{33}=a_{31}^{2}+a_{32}^{2}+a_{33}^{2}

a33=1a_{33}=-1 , 则 A0|\boldsymbol{A}| \neq 0 , 于是 A=1|\boldsymbol{A}|=1 , 且 a31=a32=0a_{31}=a_{32}=0 ; 由 A=1|\boldsymbol{A}|=1 可知, A1=A\boldsymbol{A}^{-1}= \boldsymbol{A}^{\prime} , 则

A(x1x2x3)=(001),(x1x2x3)=A(001)\boldsymbol{A}\left(\begin{array}{l} x_{1} \\ x_{2} \\ x_{3} \end{array}\right)=\left(\begin{array}{l} 0 \\ 0 \\ 1 \end{array}\right),\left(\begin{array}{l} x_{1} \\ x_{2} \\ x_{3} \end{array}\right)=\boldsymbol{A}^{\prime}\left(\begin{array}{l} 0 \\ 0 \\ 1 \end{array}\right)

(x1x2x3)=(a31a32a33)\left(\begin{array}{l} x_{1} \\ x_{2} \\ x_{3} \end{array}\right)=\left(\begin{array}{l} a_{31} \\ a_{32} \\ a_{33} \end{array}\right)

所以, x1=a31=0,x2=a32=0,x3=a33=1.x_{1}=a_{31}=0, x_{2}=a_{32}=0, x_{3}=a_{33}=-1.\blacksquare


2022.8.29

请从以下题目中任选一题作答

【题11】在 xOyx O y 平面上重叠地放有边长为 a+b|a|+|b| 的两个正方形 S1S_{1}S2S_{2} (它们的中心位于原点, 边与坐标轴平行), 其中 a,ba, b 是使极限 limx0ex1+ax1+bxx3\displaystyle\lim _{x \rightarrow 0} \frac{e^{x}-\frac{1+a x}{1+b x}}{x^{3}} 存在的常数. 现将 S2S_{2} 平移到正方形 StS_{t} , 其中心点为 tt . 设 S1S2S_{1} \bigcap S_{2} 的面积不小于 12\frac{1}{2} , 求动点 tt 在第一象限内变动时, 其变动范围 DD 的面积..\blacktriangleright

【题22】请写出一个以 2+3\sqrt{2}+\sqrt{3} 为根的有理系数首一不可约多项式 f(x)f(x) , 并证明 f(x)f(x) 的不可约性..\blacktriangleright

\blacktriangleleft

【题11
由极限

limx0ex1+ax1+bxx3=limx0ex(1+bx)(1+ax)x3(1+bx)\displaystyle\lim _{x \rightarrow 0} \frac{e^{x}-\frac{1+a x}{1+b x}}{x^{3}}=\lim _{x \rightarrow 0} \frac{e^{x}(1+b x)-(1+a x)}{x^{3}(1+b x)}

=limx0(1+x+12x2+16x3+o(x3))(1+bx)(1+ax)x3=limx0[1+(1+b)x+(12+b)x2+(16+b2)x3+o(x3)](1+ax)x3=limx0[(1a+b)x+(12+b)x2+(16+b2)x3+o(x3)]x3\begin{array}{l} =\displaystyle\lim _{x \rightarrow 0} \frac{\left(1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+o\left(x^{3}\right)\right)(1+b x)-(1+a x)}{x^{3}} \\ =\displaystyle\lim _{x \rightarrow 0} \frac{\left[1+(1+b) x+\left(\frac{1}{2}+b\right) x^{2}+\left(\frac{1}{6}+\frac{b}{2}\right) x^{3}+o\left(x^{3}\right)\right]-(1+a x)}{x^{3}} \\ =\displaystyle\lim _{x \rightarrow 0} \frac{\left[(1-a+b) x+\left(\frac{1}{2}+b\right) x^{2}+\left(\frac{1}{6}+\frac{b}{2}\right) x^{3}+o\left(x^{3}\right)\right]}{x^{3}} \end{array}

存在, 可得方程组

{1a+b=0,12+b=0.\left\{\begin{array}{c} 1-a+b=0, \\ \frac{1}{2}+b=0 . \end{array}\right.

解此方程组得 a=12,b=12a=\frac{1}{2}, b=-\frac{1}{2} . 于是 a+b=1|a|+|b|=1 . 由于点 ttStS_{t} 的中心, 设其坐标为 (x,y)(x, y) , 则 S1S2S_{1} \cap S_{2} 的面积=图中矩形 ABCD\mathrm{ABCD} 的面积 =ABAD=|A B| \cdot|A D| ,
其中 AB=AMMB=1x|A B|=|A M|-|M B|=1-x , 同理 AD=1y|A D|=1-y 。于是

D={(x,y):(1x)(1y)12,0x12,0y12}D=\left\{(x, y):(1-x)(1-y) \geq \frac{1}{2}, 0 \leq x \leq \frac{1}{2}, 0 \leq y \leq \frac{1}{2}\right\}

DD 的面积为

S=012[112(1x)]dx=1212ln2.S=\int_{0}^{\frac{1}{2}}\left[1-\frac{1}{2(1-x)}\right] d x=\frac{1}{2}-\frac{1}{2} \ln 2.\blacksquare

\blacktriangleleft

【题22】注 意 到 , f(x)=x410x2+1=[(x21)22x][(x21)+22x]=[(x2)3][(x2)+3][(x21)+22x]f(x)=x^{4}-10 x^{2}+1=\left[\left(x^{2}-1\right)-2 \sqrt{2} x\right]\left[\left(x^{2}-1\right)+2 \sqrt{2} x\right] =[(x-\sqrt{2})-\sqrt{3}][(x-\sqrt{2})+\sqrt{3}]\left[\left(x^{2}-1\right)+2 \sqrt{2} x\right]

下证: f(x)f(x) 的不可约性.

(1) 若 f(x)f(x) 能分解成一次与三次有理系数多项式的乘积,
f(x)f(x) 存在有理根.

而整系数多项式 f(x)f(x) 的有理根只可能为 ±1\pm 1 , 但验证可知 f(±1)0f(\pm 1) \neq 0 ,

所以该情形不可能出现.

(2) 若 f(x)f(x) 能分解成两个 22 次有理系数多项式的乘积, 即 f(x)=f1(x)f2(x)f(x)=f_{1}(x) f_{2}(x) ,

f(x)=f1(x)f2(x)f(x)=f_{1}(x) f_{2}(x) 自然也可视为实数域上的因式分解,

f(x)=(x23)(x2+3)(x+23)(x+2+3)f(x)=(x-\sqrt{2}-\sqrt{3})(x-\sqrt{2}+\sqrt{3})(x+\sqrt{2}-\sqrt{3})(x+\sqrt{2}+\sqrt{3}) ,

根据 f(x)f(x) 在实数域上因式分解的唯一性可知, f1(x),f2(x)f_{1}(x), f_{2}(x) 非有理系数多项式, 矛盾!

所以 f(x)f(x) 在有理数域上不可约..\blacksquare


2022.8.28

【题】设 f(x)f(x)[0,π2]\left[0, \frac{\pi}{2}\right] 上连续, 0π2f(x)sinxdx=0π2f(x)cosxdx=0\int_{0}^{\frac{\pi}{2}} f(x) \sin x d x=\int_{0}^{\frac{\pi}{2}} f(x) \cos x d x=0 . 试证: f(x)f(x)(0,π2)\left(0, \frac{\pi}{2}\right) 内至少有两个零点..\blacktriangleright

\blacktriangleleft

f(x)f(x)(0,π2)\left(0, \frac{\pi}{2}\right) 无零点, 因 f(x)f(x) 连续, f(x)f(x)(0,π2)\left(0, \frac{\pi}{2}\right) 恒保持同号, 例如 f(x)>0f(x)>0 则 得估计 0π2f(x)sinxdx>0\int_{0}^{\frac{\pi}{2}} f(x) \sin x d x>0 与已知条件矛盾, 可见 (0,π2)\left(0, \frac{\pi}{2}\right) 中至少有一个零点 x0(0,π2)x_{0} \in\left(0, \frac{\pi}{2}\right)

f(x)f(x)x0x_{0} 外在 (0,π2)\left(0, \frac{\pi}{2}\right) 内再无零点, 则 f(x)f(x)(0,x0)\left(0, x_{0}\right)(x0,π2)\left(x_{0}, \frac{\pi}{2}\right) 内分别保持不变号:

(1)(1)ff 在此二区间符号相反, 则 f(x)sin(xx0)f(x) \sin \left(x-x_{0}\right) 恒正或恒负。从而

0π2f(x)sin(xx0)dx>0 或 <0\int_{0}^{\frac{\pi}{2}} f(x) \sin \left(x-x_{0}\right) d x>0 \text { 或 }<0

另一方面, 由已知条件, 有

0π2f(x)sin(xx0)dx=cosx00π2f(x)sinxdxsinx00π2f(x)cosxdx=0,\int_{0}^{\frac{\pi}{2}} f(x) \sin \left(x-x_{0}\right) d x=\cos x_{0} \int_{0}^{\frac{\pi}{2}} f(x) \sin x d x-\sin x_{0} \int_{0}^{\frac{\pi}{2}} f(x) \cos x d x=0,

矛盾。

(2)(2)ff 在此二区间符号相同, 则 f(x)cos(xx0)f(x) \cos \left(x-x_{0}\right) 恒正或恒负, 同样可推出矛盾。\blacksquare


2022.8.27

【题】 设函数 f(x)f(x) 在区间 [0,1][0,1] 上 Riemann 可积, 在 x=1x=1 可导, f(1)=0,f(1)=af(1)=0, f^{\prime}(1)=a , 证明: limnn201xnf(x)dx=a.\displaystyle\lim _{n \rightarrow \infty} n^{2} \int_{0}^{1} x^{n} f(x) \mathrm{d} x=-a.\blacktriangleright

\blacktriangleleft

M=supnf(x)<+M=\displaystyle\sup _{n \rightarrow \infty}|f(x)|<+\infty , 由 Taylor 展开式

f(x)=f(1)+f(1)(x1)+r(x)=a(x1)+r(x)f(x)=f(1)+f^{\prime}(1)(x-1)+r(x)=a(x-1)+r(x)

因为 r(x)=o(x1)r(x)=o(x-1) , 所以, 对于任意 ε>0\varepsilon>0 , 存在 δ(0,1)\delta \in(0,1) , 使得当 δ<x1\delta<x \leqslant 1 时. 有

r(x)ε(1x)|r(x)| \leqslant \varepsilon(1-x)

于是,我们有

01xnf(x)dx=0δxnf(x)dx+δ1axn(x1)dx+δ1xnr(x)dx\int_{0}^{1} x^{n} f(x) \mathrm{d} x=\int_{0}^{\delta} x^{n} f(x) \mathrm{d} x+\int_{\delta}^{1} a x^{n}(x-1) \mathrm{d} x+\int_{\delta}^{1} x^{n} r(x) \mathrm{d} x

R1=0δxnf(x)dx,R2=δ1axn(x1)dx,R3=δ1xnr(x)dxR_{1}=\int_{0}^{\delta} x^{n} f(x) \mathrm{d} x, R_{2}=\int_{\delta}^{1} a x^{n}(x-1) \mathrm{d} x, R_{3}=\int_{\delta}^{1} x^{n} r(x) \mathrm{d} x ,注意到

R1M0δxn dx=Mδn+1n+1,R2=a(n+1)(n+2)+a(δn+1n+1δn+2n+2),R3δ1r(x)dxεδ1xn(1x)dxε01xn(1x)dx=ε(n+1)(n+2),\begin{array}{c} \left|R_{1}\right| \leqslant M \int_{0}^{\delta} x^{n} \mathrm{~d} x=M \cdot \frac{\delta^{n+1}}{n+1}, \\ R_{2}=\frac{-a}{(n+1)(n+2)}+a\left(\frac{\delta^{n+1}}{n+1}-\frac{\delta^{n+2}}{n+2}\right), \\ \left|R_{3}\right| \leqslant \int_{\delta}^{1}|r(x)| \mathrm{d} x \leqslant \varepsilon \int_{\delta}^{1} x^{n}(1-x) \mathrm{d} x \leqslant \varepsilon \int_{0}^{1} x^{n}(1-x) \mathrm{d} x=\frac{\varepsilon}{(n+1)(n+2)}, \end{array}

我们有

limnn2R1=0,limnn2R2+a=0,lim supnn2R3ε,\begin{array}{l} \displaystyle\lim _{n \rightarrow \infty}\left|n^{2} R_{1}\right|=0, \\ \displaystyle\lim _{n \rightarrow \infty}\left|n^{2} R_{2}+a\right|=0, \\ \displaystyle\limsup _{n \rightarrow \infty}\left|n^{2} R_{3}\right| \leqslant \varepsilon, \end{array}

所以, lim supnn201xnf(x)dx+aε\displaystyle\limsup _{n \rightarrow \infty}\left|n^{2} \int_{0}^{1} x^{n} f(x) \mathrm{d} x+a\right| \leqslant \varepsilon .
ε\varepsilon 的任意性, 即得 limnn201xnf(x)dx=a.\displaystyle\lim _{n \rightarrow \infty} n^{2} \int_{0}^{1} x^{n} f(x) \mathrm{d} x=-a.\blacksquare


2022.8.26

【题】试证明:

limn[37(4n1)59(4n+1)]2(4n+3)=30π2sin32x dx0π2sin12x dx.\displaystyle\lim _{n \rightarrow \infty}\left[\frac{3 \cdot 7 \cdots \cdots(4 n-1)}{5 \cdot 9 \cdots \cdots(4 n+1)}\right]^{2}(4 n+3)=3 \frac{\int_{0}^{\frac{\pi}{2}} \sin ^{\frac{3}{2}} x \mathrm{~d} x}{\int_{0}^{\frac{\pi}{2}} \sin ^{\frac{1}{2}} x \mathrm{~d} x}.\blacktriangleright

\blacktriangleleft

Iy=0π2sinyx dx(y0)I_{y}=\int_{0}^{\frac{\pi}{2}} \sin ^{y} x \mathrm{~d} x(y \geqslant 0) . 当 y>2y>2 时,

Iy=0π2siny1t dcost=0π2(y1)siny2tcos2t dt=(y1)Iy2(y1)Iy.\begin{aligned} I_{y} &=-\int_{0}^{\frac{\pi}{2}} \sin ^{y-1} t \mathrm{~d} \cos t=\int_{0}^{\frac{\pi}{2}}(y-1) \sin ^{y-2} t \cos ^{2} t \mathrm{~d} t \\ &=(y-1) I_{y-2}-(y-1) I_{y} . \end{aligned}

因此, Iy=y1yIy2I_{y}=\frac{y-1}{y} I_{y-2} . 于是, 当 x0,nNx \geqslant 0, n \in \mathbf{N} 时,

I2n+x=2n1+x2n+x2n3+x2n2+x1+x2+xIx,I2n+x+1=2n+x2n+1+x2n2+x2n1+x2+x3+xI1+x.\begin{array}{l} I_{2 n+x}=\frac{2 n-1+x}{2 n+x} \cdot \frac{2 n-3+x}{2 n-2+x} \cdots \cdots \frac{1+x}{2+x} \cdot I_{x}, \\ I_{2 n+x+1}=\frac{2 n+x}{2 n+1+x} \cdot \frac{2 n-2+x}{2 n-1+x} \cdots \frac{2+x}{3+x} \cdot I_{1+x} . \end{array}

I2n+1+xI2n+xI2n1+xI_{2 n+1+x} \leqslant I_{2 n+x} \leqslant I_{2 n-1+x} , 我们有

1I2n+xI2n+1+xI2n1+xI2n+1+x=2n+1+x2n+x1 \leqslant \frac{I_{2 n+x}}{I_{2 n+1+x}} \leqslant \frac{I_{2 n-1+x}}{I_{2 n+1+x}}=\frac{2 n+1+x}{2 n+x}

两边取极限,整理后即得

limn[(1+x)(3+x)(2n1+x)(2+x)(4+x)(2n+x)]2(2n+1+x)=(1+x)I1+xIx\displaystyle\lim _{n \rightarrow \infty}\left[\frac{(1+x) \cdot(3+x) \cdots(2 n-1+x)}{(2+x) \cdot(4+x) \cdots(2 n+x)}\right]^{2}(2 n+1+x)=(1+x) \frac{I_{1+x}}{I_{x}}

x=12x=\frac{1}{2} , 整理后即得 limn[37(4n1)59(4n+1)]2(4n+3)=30π2sin32x dx0π2sin12x dx.\displaystyle\lim _{n \rightarrow \infty}\left[\frac{3 \cdot 7 \cdots(4 n-1)}{5 \cdot 9 \cdots \cdots(4 n+1)}\right]^{2}(4 n+3)=3 \frac{\int_{0}^{\frac{\pi}{2}} \sin ^{\frac{3}{2}} x \mathrm{~d} x}{\int_{0}^{\frac{\pi}{2}} \sin ^{\frac{1}{2}} x \mathrm{~d} x} .\blacksquare


2022.8.25

【题】 (1997 国际大学生数学竞赛试题) 设 {an}n=1\left\{a_{n}\right\}_{n=1}^{\infty} 是一个正实数列, 并且满足 limnan=0\displaystyle\lim _{n \rightarrow \infty} a_{n}=0 . 求 limn1nk=1ln(kn+an).\displaystyle\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{\infty} \ln \left(\frac{k}{n}+a_{n}\right).\blacktriangleright

\blacktriangleleft

我们知道

1=01lnx dx=limn1nk=1nln(kn)-1=\int_{0}^{1} \ln x \mathrm{~d} x=\displaystyle\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \ln \left(\frac{k}{n}\right)

所以

1nk=1nln(kn+an)1nk=1nln(kn)1(n)\frac{1}{n} \sum_{k=1}^{n} \ln \left(\frac{k}{n}+a_{n}\right) \geqslant \frac{1}{n} \sum_{k=1}^{n} \ln \left(\frac{k}{n}\right) \rightarrow-1 \quad(n \rightarrow \infty)

对于给定的 ε>0\varepsilon>0 , 存在 n0n_{0} , 使得任意 nn0n \geqslant n_{0} , 有 0<an<ε0<a_{n}<\varepsilon . 于是

1nk=1nln(kn+an)1nk=1nln(kn+ε)\frac{1}{n} \sum_{k=1}^{n} \ln \left(\frac{k}{n}+a_{n}\right) \leqslant \frac{1}{n} \sum_{k=1}^{n} \ln \left(\frac{k}{n}+\varepsilon\right)

因为 limn1nk=1nln(kn+ε)=01ln(x+ε)dx=01+εlnx dx\displaystyle\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \ln \left(\frac{k}{n}+\varepsilon\right)=\int_{0}^{1} \ln (x+\varepsilon) \mathrm{d} x=\int_{0}^{1+\varepsilon} \ln x \mathrm{~d} x , 所以当 ε0\varepsilon \rightarrow 0 时, 有

limn1nk=1ln(kn+an)=1.\displaystyle\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{\infty} \ln \left(\frac{k}{n}+a_{n}\right)=-1.\blacksquare


2022.8.24

【题】(1994国际大学生数学竞赛试题)
求极限limnln2nnk=2n21lnkln(nk).\displaystyle\lim_{n\to \infty}\frac{\ln^2 n}{n}\sum_{k=2}^{n-2}\frac{1}{\ln k·\ln (n-k)}.\blacktriangleright

\blacktriangleleft

An=limnln2nnk=2n21lnkln(nk).A_n=\displaystyle\lim_{n\to \infty}\frac{\ln^2 n}{n}\sum_{k=2}^{n-2}\frac{1}{\ln k·\ln (n-k)}.\blacktriangleright

易知Anln2nnn3ln2n=13n.A_n\geq \frac{\ln ^2n}{n}\frac{n-3}{\ln^2n}=1-\frac{3}{n}.

MM 满足2Mn22\leq M \leq \frac{n}{2},由于1lnkln(nk)\frac{1}{\ln k ·\ln(n-k)}[2,n2][2,\frac{n}{2}]上单调递减并且关于n2\frac{n}{2}对称,所以

An=ln2nn(k=2M+k=M+1nM1+k=nMn2)1lnkln(nk)ln2nn[2M1ln2ln(n2)+n2M1lnMln(nM)]2ln2Mlnnn+(12Mn)lnnlnM+O(1lnn)\begin{aligned} A_{n} &=\frac{\ln ^{2} n}{n}\left(\sum_{k=2}^{M}+\sum_{k=M+1}^{n-M-1}+\sum_{k=n-M}^{n-2}\right) \frac{1}{\ln k \cdot \ln (n-k)} \\ & \leqslant \frac{\ln ^{2} n}{n}\left[2 \cdot \frac{M-1}{\ln 2 \cdot \ln (n-2)}+\frac{n-2 M-1}{\ln M \cdot \ln (n-M)}\right] \\ & \leqslant \frac{2}{\ln 2} \cdot \frac{M \ln n}{n}+\left(1-\frac{2 M}{n}\right) \frac{\ln n}{\ln M}+O\left(\frac{1}{\ln n}\right) \end{aligned}

选取 M=[nln2n]+1M=\left[\frac{n}{\ln ^{2} n}\right]+1 , 我们得到

An(12nln2n)lnnlnn2lnlnn+O(1lnn)1+O(lnlnnlnn)A_{n} \leqslant\left(1-\frac{2}{n \ln ^{2} n}\right) \frac{\ln n}{\ln n-2 \ln \ln n}+O\left(\frac{1}{\ln n}\right) \leqslant 1+O\left(\frac{\ln \ln n}{\ln n}\right)

于是

limnln2nnk=2n21lnkln(nk)=1.\displaystyle\lim _{n \rightarrow \infty} \frac{\ln ^{2} n}{n} \sum_{k=2}^{n-2} \frac{1}{\ln k \cdot \ln (n-k)}=1.\blacksquare


2022.8.23

【题】 函数ff称为P-函数如果其是可微的且满足ff: RR\mathbb{R} \rightarrow \mathbb{R} ,有连续导函数 ff^{\prime} , xRx \in \mathbb{R},满足 f(x+f(x))=f(x)f\left(x+f^{\prime}(x)\right)=f(x) , xRx \in \mathbb{R} .

(i)(i)证明 P-函数的导数至少有一个零点.

(ii)(ii)试举出一个非常数的P-函数.

(iii)(iii) 证明如果一个P-函数的导数有至少两个不同的零点,则其是常数函数.\blacktriangleright

\blacktriangleleft

(i)(i) If ff is a P -function, and f(x)0f^{\prime}(x) \neq 0 for some xRx \in \mathbb{R} , the mean value theorem shows that ff^{\prime} vanishes at some point ξ\xi between xx and x+f(x):0=f(x+f(x))f(x)=f(x)f(ξ)x+f^{\prime}(x): 0=f(x+ \left.f^{\prime}(x)\right)-f(x)=f^{\prime}(x) f^{\prime}(\xi)

(ii)(ii) Try a nonconstant polynomial function ff . Identification of coefficients forces f(x)=x2+px+qf(x)=-x^{2}+p x+q , where pp and qq are two arbitrarily fixed real numbers. This is not at all accidental. As shown in the comment that follows the solution, every nonconstant P -function whose derivative vanishes at a single point is of this form.

(iii)(iii) Let ff be a P -function. By (i)(i), the set Z={x:xRandf(x)=0}Z=\left\{x: x \in \mathbb{R}\right. and \left.f^{\prime}(x)=0\right\} has at least one element. We now show that if it has more than one element, then it must be all of R\mathbb{R} . The conclusion will follow. The proof is broken into three steps.

STEP 1. If ff^{\prime} vanishes at some point aa , then f(x)0f^{\prime}(x) \geq 0 for xax \leq a , and f(x)0f^{\prime}(x) \leq 0 for xax \geq a . The argument is essentially the same in both cases, so we deal only with the first one. We argue by reductio ad absurdum. Suppose f(x0)<0f^{\prime}\left(x_{0}\right)<0 for some x0<ax_{0}<a and let α=inf{x:x>x0andf(x)=0}\alpha=\inf \left\{x: x>x_{0}\right. and \left.f^{\prime}(x)=0\right\} ; clearly, this infimum exists. By continuity of f,f(α)=0f^{\prime}, f^{\prime}(\alpha)=0 and f(x)<0f^{\prime}(x)<0 for x0<x<αx_{0}<x<\alpha ; in particular, ff is strictly monotonic (decreasing) on (x0,α)\left(x_{0}, \alpha\right) . Consider further the continuous real-valued function g:xx+f(x),xRg: x \mapsto x+f^{\prime}(x), x \in \mathbb{R} , and note that g(x)<xg(x)<x for x0<x<αx_{0}<x<\alpha , and g(α)=αg(\alpha)=\alpha . Since g(α)=α>x0g(\alpha)=\alpha>x_{0} and gg is continuous, g(x)>x0g(x)>x_{0} for xx in (x0,α)\left(x_{0}, \alpha\right) , sufficiently close to α\alpha . Consequently, for any such xx, x0<g(x)<x<αx_{0}<g(x)< x<\alpha , and f(g(x))=f(x)f(g(x))=f(x) , which contradicts the strict monotonicity of ff on (x,α)(x, \alpha)

STEP 2. If ff' vanishes at two points aa and bb, a<ba<b , then ff is constant on [a,b][a, b] . By Step 1, f(x)0f^{\prime}(x) \geq 0 for xbx \leq b and f(x)0f^{\prime}(x) \leq 0 for xax \geq a , so ff^{\prime} vanishes identically on [a,b][a, b] . Consequently, ff is constant on [a,b][a, b] .
We are now in a position to conclude the proof.

STEP 3. If the set Z={x:xRandf(x)=0}Z=\left\{x: x \in \mathbb{R}\right. and \left.f^{\prime}(x)=0\right\} has more than one element, then ZZ is all of R\mathbb{R} . By Step 2, ZZ is a nondegenerate interval, and ff is constant on Z:f(x)=cZ: f(x)=c for all xx in ZZ . We show that α=infZ=\alpha=\inf Z=-\infty and β=supZ=+\beta=\sup Z=+\infty . Suppose, if possible, that α>\alpha>-\infty . Then α\alpha is a member of ZZ , by continuity of ff^{\prime} . Recall the function gg from Step 1. By Step 1, f(x)>0f^{\prime}(x)>0 for x<αx<\alpha , so g(x)>xg(x)>x , f(x)f(x) is strictly monotonic (increasing), and f(x)<cf(x)<c for x<αx<\alpha . Since f(x)f(x) is strictly monotonic for x<αx<\alpha , the conditions f(g(x))=f(x)f(g(x))=f(x) and g(x)>xg(x)>x force x<α<g(x)x<\alpha<g(x) . Since g(α)=α<βg(\alpha)=\alpha<\beta , and gg is continuous, it follows that g(x)<βg(x)<\beta for x<αx<\alpha , sufficiently close to α\alpha . Finally, take any such xx and recall that ZZ is an interval to conclude that g(x)Zg(x) \in Z , so f(x)=f(g(x))=cf(x)=f(g(x))=c , in contradiction to f(x)<cf(x)<c established above. Consequently, α=\alpha=-\infty . A similar argument shows that β=+.\beta=+\infty.\blacksquare

The antiderivative test for series, which we now state and prove, follows from the mean value theorem and the fact that a series of positive terms converges if and only if its sequence of partial sums is bounded above.


2022.8.22

【题】设实数列(an)n1\left(a_{n}\right)_{n \geq 1} 收敛至 00 , 函数 f:RRf: \mathbb{R} \rightarrow \mathbb{R} 有原函数且满足 f(x+an)=f(x),xRf\left(x+a_{n}\right)=f(x) , x \in \mathbb{R} , n1n \geq 1 . 证明 ff 是常数..\blacktriangleright

\blacktriangleleft

FFff的原函数 . 则存在常数 CC 使得 F(x+an)F(x)CF\left(x+a_{n}\right)-F(x) \equiv C .

对任意 aRa \in \mathbb{R} ,存在整数列 (bn)\left(b_{n}\right) 使得 limnanbn=a\displaystyle\lim _{n \rightarrow \infty} a_{n} b_{n}=a .

如果 bnb_{n}a/ana / a_{n}的整数部分 , 则a=anbn+rna=a_{n} b_{n}+r_{n} , 0rn<an0 \leq r_{n}<a_{n} . 由此在我们的假设中使 rn0r_{n} \rightarrow 0 ,我们有 anbnaa_{n} b_{n} \rightarrow a .固定一实数 x0x_{0} . 我们有

F(x0+anbn)F(x0)=F(x0+bnan)F(x0+(bn1)an)++F(x0+an)F(x0)=bn[F(x0+an)F(x0)]=anbnF(x0+an)F(x0)an\begin{aligned} F\left(x_{0}+a_{n} b_{n}\right)-F\left(x_{0}\right)=& F\left(x_{0}+b_{n} a_{n}\right)-F\left(x_{0}+\left(b_{n}-1\right) a_{n}\right)+\cdots+F\left(x_{0}+a_{n}\right) \\ &-F\left(x_{0}\right) \\ =& b_{n}\left[F\left(x_{0}+a_{n}\right)-F\left(x_{0}\right)\right] \\ =& a_{n} b_{n} \frac{F\left(x_{0}+a_{n}\right)-F\left(x_{0}\right)}{a_{n}} \end{aligned}

由于 FF 是可微的, 我们有 nn \rightarrow \infty ,

F(x0+a)F(x0)=aF(x0)F\left(x_{0}+a\right)-F\left(x_{0}\right)=a F^{\prime}\left(x_{0}\right) .

又由于 aa 是任意的, 则对 xRx \in \mathbb{R} ,

F(x)=F(x0)+(xx0)F(x0)=[F(x0)x0F(x0)]+xF(x0)F(x)=F\left(x_{0}\right)+\left(x-x_{0}\right) F^{\prime}\left(x_{0}\right)=\left[F\left(x_{0}\right)-x_{0} F^{\prime}\left(x_{0}\right)\right]+x F^{\prime}\left(x_{0}\right),

于是 F(x)=B+AxF(x)=B+A x , AABB 均为常数. 故 f(x)=A=F(x0).f(x)=A=F^{\prime}\left(x_{0}\right).\blacksquare


2022.8.21

【题】试求积分

1xx2a+xa+1dx,x>0,a>0.\int \frac{1}{x \sqrt{x^{2 a}+x^{a}+1}} d x, \quad x>0,a>0.\blacktriangleright

\blacktriangleleft

变换积分为

1xa+11+1xa+1x2adx=1(1xa+12)2+341xa+1dx\int \frac{1}{x^{a+1} \sqrt{1+\frac{1}{x^{a}}+\frac{1}{x^{2 a}}}} d x=\int \frac{1}{\sqrt{\left(\frac{1}{x^{a}}+\frac{1}{2}\right)^{2}+\frac{3}{4}}} \cdot \frac{1}{x^{a+1}} d x

换元 t=1/xa+1/2t=1 / x^{a}+1 / 2 则有

1a1t2+34dx=1aln(t+t2+34)+C=1aln(1xa+12+1+1xa+1x2a)+C.\begin{aligned} -\frac{1}{a} \int \frac{1}{\sqrt{t^{2}+\frac{3}{4}}} d x &=-\frac{1}{a} \ln \left(t+\sqrt{t^{2}+\frac{3}{4}}\right)+C \\ &=-\frac{1}{a} \ln \left(\frac{1}{x^{a}}+\frac{1}{2}+\sqrt{1+\frac{1}{x^{a}}+\frac{1}{x^{2 a}}}\right)+C .\blacksquare \end{aligned}


2022.8.20

【题】试证明 x(0,1)\forall x \in(0,1) ,2π(sinπx2)arcsinx<x2<(sinx)arcsinx.\frac{2}{\pi}\left(\sin \frac{\pi x}{2}\right) \arcsin x<x^{2}<(\sin x) \arcsin x.\blacktriangleright

\blacktriangleleft

第一个不等式即f(x)f1(y)xyf(x) f^{-1}(y) \leq x y的特例,

这里 x>0,yf(x)x>0, y \geq f(x) ,正函数ff 满足 f(x)/xf(x) / x 递增.

第一个不等式只需注意到
f(x)xf(z)z,z=f1(y)x\frac{f(x)}{x} \leq \frac{f(z)}{z} , z=f^{-1}(y) \geq x,则不难得证。

第二个不等式即f(x)f1(y)xyf(x) f^{-1}(y) \geq x y的特例,

这里 x,y>0,yf(x)x, y>0, y \leq f(x) , 函数 ff 满足 f(x)/xf(x) / x 递增.

只需注意到f(x)xf(z)z for z=f1(y)x\frac{f(x)}{x} \geq \frac{f(z)}{z} \quad \text { for } z=f^{-1}(y) \leq x 即可.

为了得到原题不等式, 令 f(x)=arcsinx,x(0,1)f(x)=\arcsin x , x \in(0,1)即可 .

下面给出其他一些例子

(ex1)ln(1+x)>x2 for x>0,(tanx)arctanx>x2 for x(0,π/2),[(1+x)p1][(1+x)1/p11]>x2 for x>0 and p>0,p1,[(1x)p1][1(1+x)1/p]>x2 for x(0,1) and p<1.\begin{array}{rlr} \left(\mathrm{e}^{x}-1\right) \ln (1+x) & >x^{2} & \text { for } x>0, \\ (\tan x) \arctan x & >x^{2} & \text { for } x \in(0, \pi / 2), \\ {\left[(1+x)^{p}-1\right]\left[(1+x)^{1 / p-1}-1\right]} & >x^{2} & \text { for } x>0 \text { and } p>0, p \neq 1, \\ {\left[(1-x)^{p}-1\right]\left[1-(1+x)^{1 / p}\right]} & >x^{2} & \text { for } x \in(0,1) \text { and } p<-1 . \end{array}

\blacksquare


2022.8.19

【题】证明数列 (an)n1\left(a_{n}\right)_{n \geq 1} :an=(1+1n)n+pa_{n}=\left(1+\frac{1}{n}\right)^{n+p}是递减的当且仅当 p1/2.p \geq 1 / 2.\blacktriangleright

\blacktriangleleft

x(1,1)\forall x \in(-1,1) , 我们有ln1+x1x=2x(1+x23+x45+)\ln \frac{1+x}{1-x}=2 x\left(1+\frac{x^{2}}{3}+\frac{x^{4}}{5}+\cdots\right).

x=(2n+1)1x=(2 n+1)^{-1} , 则有

lnn+1n=22n+1[1+13(2n+1)2+15(2n+1)4+]\ln \frac{n+1}{n}=\frac{2}{2 n+1}\left[1+\frac{1}{3(2 n+1)^{2}}+\frac{1}{5(2 n+1)^{4}}+\cdots\right] .

于是

lnan=2(n+p)2n+1[1+13(2n+1)2+15(2n+1)4+]=1+p12n+12[1+13(2n+1)2+15(2n+1)4+].\begin{aligned} \ln a_{n} &=\frac{2(n+p)}{2 n+1}\left[1+\frac{1}{3(2 n+1)^{2}}+\frac{1}{5(2 n+1)^{4}}+\cdots\right] \\ &=1+\frac{p-\frac{1}{2}}{n+\frac{1}{2}}\left[1+\frac{1}{3(2 n+1)^{2}}+\frac{1}{5(2 n+1)^{4}}+\cdots\right] . \end{aligned}

这表明当p1/2p \geq 1 / 2 , (an)n1\left(a_{n}\right)_{n \geq 1}是递减的.

此外

lnan+1lnan=12p(n+12)(n+32)+O(n3),n.\ln a_{n+1}-\ln a_{n}=\frac{\frac{1}{2}-p}{\left(n+\frac{1}{2}\right)\left(n+\frac{3}{2}\right)}+O\left(n^{-3}\right) , n \rightarrow \infty .

于是p<1/2p<1 / 2,且nn充分大时, ana_{n} 是递增的 ..\blacksquare


2022.8.18

【题】比大小:tan(sinx)\tan (\sin x)sin(tanx)\sin (\tan x),x(0,π/2).x \in(0, \pi / 2).\blacktriangleright

\blacktriangleleft

f(x)=tan(sinx)sin(tanx)f(x)=\tan (\sin x)-\sin (\tan x) . 则有

f(x)=cosxcos2(sinx)cos(tanx)cos2x=cos3xcos(tanx)cos2(sinx)cos2xcos2(tanx).\begin{aligned} f^{\prime}(x) &=\frac{\cos x}{\cos ^{2}(\sin x)}-\frac{\cos (\tan x)}{\cos ^{2} x} \\ &=\frac{\cos ^{3} x-\cos (\tan x) \cdot \cos ^{2}(\sin x)}{\cos ^{2} x \cdot \cos ^{2}(\tan x)} . \end{aligned}

对于 0<x<arctanπ20<x<\arctan \frac{\pi}{2} ,由cosx\cos x(0,π2)\left(0, \frac{\pi}{2}\right) 的凹凸性知

cos(tanx)cos2(sinx)3<13[cos(tanx)+2cos(sinx)]cos[tanx+2sinx3]<cosx\begin{aligned} \sqrt[3]{\cos (\tan x) \cdot \cos ^{2}(\sin x)} &<\frac{1}{3}[\cos (\tan x)+2 \cos (\sin x)] \\ & \leq \cos \left[\frac{\tan x+2 \sin x}{3}\right]<\cos x \end{aligned}

其中最后一个不等号是因为

[tanx+2sinx3]=13[1cos2x+2cosx]1cos2xcosxcosx3=1\left[\frac{\tan x+2 \sin x}{3}\right]^{\prime}=\frac{1}{3}\left[\frac{1}{\cos ^{2} x}+2 \cos x\right] \geq \sqrt[3]{\frac{1}{\cos ^{2} x} \cdot \cos x \cdot \cos x}=1

于是 cos3xcos(tanx)cos2(sinx)>0\cos ^{3} x-\cos (\tan x) \cdot \cos ^{2}(\sin x)>0 , 即 f(x)>0f^{\prime}(x)>0 .

因此,ff[0,arctanπ/2][0, \arctan \pi / 2]是递增的.

最后注意到

tan[sin(arctanπ2)]=tanπ/21+π2/4>tanπ4=1\tan \left[\sin \left(\arctan \frac{\pi}{2}\right)\right]=\tan \frac{\pi / 2}{\sqrt{1+\pi^{2} / 4}}>\tan \frac{\pi}{4}=1

这表明如果 x[arctanπ2,π2]x \in \left[\arctan \frac{\pi}{2}, \frac{\pi}{2}\right]tan(sinx)>1sin(tanx)\tan (\sin x)>1\geq\sin(\tan x) ,即 f(x)>0.f(x)>0.\blacksquare


2022.8.17

【题】(KolmogorovsInequality)\mathbf{(Kolmogorov's Inequality)}.

f:RRf: \mathbb{R} \rightarrow \mathbb{R}C3C^{3} . 且 ffff^{\prime \prime \prime} 都有界.

M0=supxRf(x),M3=supxRf(x)M_{0}=\displaystyle\sup _{x \in \mathbb{R}}|f(x)|, \quad M_{3}=\sup _{x \in \mathbb{R}}\left|f^{\prime \prime \prime}(x)\right|.

(a)(a) 证明 ff^{\prime} 有界,且

supxRf(x)12(9M02M3)1/3\displaystyle\sup _{x \in \mathbb{R}}\left|f^{\prime}(x)\right| \leq \frac{1}{2}\left(9 M_{0}^{2} M_{3}\right)^{1 / 3} .

(b)(b) ff^{\prime \prime} 是否也有界?\blacktriangleright

(a)(a) 固定 xRx \in \mathbb{R} , h0h \neq 0 .

由泰勒公式,

f(x+h)f(x)hf(x)h22f(x)M3h36\left|f(x+h)-f(x)-h f^{\prime}(x)-\frac{h^{2}}{2} f^{\prime \prime}(x)\right| \leq M_{3} \frac{h^{3}}{6},

f(xh)f(x)+hf(x)h22f(x)M3h36.\left|f(x-h)-f(x)+h f^{\prime}(x)-\frac{h^{2}}{2} f^{\prime \prime}(x)\right| \leq M_{3} \frac{h^{3}}{6} .

因此

2hf(x)=(f(xh)f(x)+hf(x)h22f(x))(f(x+h)f(x)hf(x)h22f(x))+f(x+h)f(xh)f(xh)f(x)+hf(x)h22f(x)+f(x+h)f(x)hf(x)h22f(x)+f(x+h)+f(xh)=M3h33+2M0.\begin{aligned} 2 h\left|f^{\prime}(x)\right|=& \mid\left(f(x-h)-f(x)+h f^{\prime}(x)-\frac{h^{2}}{2} f^{\prime \prime}(x)\right) \\ &-\left(f(x+h)-f(x)-h f^{\prime}(x)-\frac{h^{2}}{2} f^{\prime \prime}(x)\right)+f(x+h)-f(x-h) \mid \\ \leq &\left|f(x-h)-f(x)+h f^{\prime}(x)-\frac{h^{2}}{2} f^{\prime \prime}(x)\right| \\ &+\left|f(x+h)-f(x)-h f^{\prime}(x)-\frac{h^{2}}{2} f^{\prime \prime}(x)\right|+|f(x+h)|+|f(x-h)| \\ =& \frac{M_{3} h^{3}}{3}+2 M_{0} . \end{aligned}

f(x)M0h+M3h26=:ψ(h).\left|f^{\prime}(x)\right| \leq \frac{M_{0}}{h}+\frac{M_{3} h^{2}}{6}=: \psi(h) .

注意到ψ(h)=M0h2+M3h3\psi^{\prime}(h)=-\frac{M_{0}}{h^{2}}+\frac{M_{3} h}{3} ,
故有最小值时 h0=(3M0M31)1/3h_{0}=\left(3 M_{0} M_{3}^{-1}\right)^{1 / 3} .
此时ψ(h)=21(9M02M3)1/3\psi(h)=2^{-1}\left(9 M_{0}^{2} M_{3}\right)^{1 / 3} , 结论成立。

(b)(b) 由假设和命题 (a)(a), ff^{\prime} , f=(f)f^{\prime \prime \prime}=\left(f^{\prime}\right)^{\prime \prime} 均有界.

Landausinequality\mathbf{Landau's inequality} ,我们可以推断出 ff^{\prime \prime} 是有界的。\blacksquare


2022.8.16

【题】给定整数 n1n \geq 1 .

(i)(i) 试证明

xn+xn1++x1=0x^{n}+x^{n-1}+\cdots+x-1=0,有一正根.设其为 ana_{n} .
且证明 an1a_{n} \leq 1

(ii)(ii) 证明 (an)n1\left(a_{n}\right)_{n \geq 1} 递减.

(iii)(iii) 证明ann+12an+1=0a_{n}^{n+1}-2 a_{n}+1=0,且 limnan=1/2\displaystyle\lim _{n \rightarrow \infty} a_{n}=1 / 2 .

(iv)(iv) 试证明an=12+142n+o(12n),n.a_{n}=\frac{1}{2}+\frac{1}{4 \cdot 2^{n}}+o\left(\frac{1}{2^{n}}\right) ,n \rightarrow \infty .\blacktriangleright

\blacktriangleleft

(i)(i)fn(x)=xn+xn1++x1f_{n}(x)=x^{n}+x^{n-1}+\cdots+x-1 .则 fnf_{n} 是连续的, fn(0)=1f_{n}(0)=-1 , fn(1)=n10f_{n}(1)=n-1 \geq 0 .

由介值性知, 存在 an(0,1]a_{n} \in (0,1] 使得 fn(an)=0f_{n}\left(a_{n}\right)=0 . 由于 fnf_{n}[0,)[0, \infty)上严格递增 ,故只有唯一解 ana_{n} .

(ii)(ii)我们有 fn(an+1)=an+1n+1<0f_{n}\left(a_{n+1}\right)=-a_{n+1}^{n+1}<0 .

由于 fnf_{n} 是递增的 ,且 0=fn(an)>fn(an+1)0=f_{n}\left(a_{n}\right)>f_{n}\left(a_{n+1}\right) , 故 an>an+1a_{n}>a_{n+1} .

(iii)(iii)注意到

(x1)(xn+xn1++x1)=xn+12x+1(x-1)\left(x^{n}+x^{n-1}+\cdots+x-1\right)=x^{n+1}-2 x+1 .

ann+12an+1=0a_{n}^{n+1}-2 a_{n}+1=0 .

于是

0<an12=ann+12<a2n+120,n.0<a_{n}-\frac{1}{2}=\frac{a_{n}^{n+1}}{2}<\frac{a_{2}^{n+1}}{2} \rightarrow 0 , n \rightarrow \infty.

limnan=1/2\displaystyle\lim _{n \rightarrow \infty} a_{n}=1 / 2 .

(iv)(iv)bn=an1/2b_{n}=a_{n}-1 / 2 . 则 ln(2bn)=(n+1)lnan\ln \left(2 b_{n}\right)=(n+1) \ln a_{n} . 又 lnan=ln2+ln(1+2bn)\ln a_{n}=-\ln 2+\ln \left(1+2 b_{n}\right) ,且 ln(1+2bn)2bn=o(1/n)\ln \left(1+2 b_{n}\right) \sim 2 b_{n}=o(1 / n) .

因此

ln(2bn)=(n+1)ln2+o(1),n,an=12+142n+o(12n),n..\begin{array}{l} \ln \left(2 b_{n}\right)=-(n+1) \ln 2+o(1) , n \rightarrow \infty, \\ a_{n}=\frac{1}{2}+\frac{1}{4 \cdot 2^{n}}+o\left(\frac{1}{2^{n}}\right) ,n \rightarrow \infty . \end{array}.\blacksquare


2022.8.15

【题】 设 f,g:RRf, g: \mathbb{R} \rightarrow \mathbb{R} 周期分别为 aa , bb . 且 limx0f(x)/x=uR\displaystyle\lim _{x \rightarrow 0} f(x) / x=u \in \mathbb{R} , limx0g(x)/x=vR\{0}\displaystyle\lim _{x \rightarrow 0} g(x) / x=v \in \mathbb{R} \backslash\{0\}.

试求

limnf((3+7)na)g((2+2)nb).\displaystyle\lim _{n \rightarrow \infty} \frac{f\left((3+\sqrt{7})^{n} a\right)}{g\left((2+\sqrt{2})^{n} b\right)}.\blacktriangleright

\blacktriangleleft

我们有

f((3+7)na)g((2+2)nb)=f((3+7)na+(37)na(37)na)g((2+2)nb+(22)nb(22)nb).\frac{f\left((3+\sqrt{7})^{n} a\right)}{g\left((2+\sqrt{2})^{n} b\right)}=\frac{f\left((3+\sqrt{7})^{n} a+(3-\sqrt{7})^{n} a-(3-\sqrt{7})^{n} a\right)}{g\left((2+\sqrt{2})^{n} b+(2-\sqrt{2})^{n} b-(2-\sqrt{2})^{n} b\right)} .

注意到

(3+7)n+(37)nZ(3+\sqrt{7})^{n}+(3-\sqrt{7})^{n} \in \mathbb{Z}(2+2)n+(22)nZ(2+\sqrt{2})^{n}+(2-\sqrt{2})^{n} \in \mathbb{Z} .

从而

f((3+7)na)g((2+2)nb)=f((37)na)g((22)nb),n1.\frac{f\left((3+\sqrt{7})^{n} a\right)}{g\left((2+\sqrt{2})^{n} b\right)}=\frac{f\left(-(3-\sqrt{7})^{n} a\right)}{g\left(-(2-\sqrt{2})^{n} b\right)}, \quad \forall n \geq 1 .

于是

limnf((3+7)na)g((2+2)nb)=ablimn{f((37)na)(37)na(22)nbg((22)nb)(37)n(22)n}.\begin{aligned} \lim _{n \rightarrow \infty} & \frac{f\left((3+\sqrt{7})^{n} a\right)}{g\left((2+\sqrt{2})^{n} b\right)} \\ &=\frac{a}{b} \cdot \lim _{n \rightarrow \infty}\left\{\frac{f\left(-(3-\sqrt{7})^{n} a\right)}{-(3-\sqrt{7})^{n} a} \cdot \frac{-(2-\sqrt{2})^{n} b}{g\left(-(2-\sqrt{2})^{n} b\right)} \cdot \frac{(3-\sqrt{7})^{n}}{(2-\sqrt{2})^{n}}\right\} . \end{aligned}

即得所求极限为 00 ..\blacksquare


2022.8.14

【题】设实数列(an)n1\left(a_{n}\right)_{n \geq 1} 满足 (an+an1)n1\left(a_{n}+a_{n}^{-1}\right)_{n \geq 1} 是收敛的.

试证明(an)n1\left(a_{n}\right)_{n \geq 1} 是收敛的.\blacktriangleright

\blacktriangleleft

a=lim infnana=\displaystyle\liminf _{n \rightarrow \infty} a_{n}A=lim supnanA=\displaystyle\limsup _{n \rightarrow \infty} a_{n} .

aaAA 都存在且有限.

A=+A=+\infty的话 , 我们得到矛盾 an+an1>ana_{n}+a_{n}^{-1}>a_{n}, 而 (an+an1)n1\left(a_{n}+a_{n}^{-1}\right)_{n \geq 1} 是有界的.

假定A>aA>a . 取子列 (ank)k1\left(a_{n_{k}}\right)_{k \geq 1} and (amk)k1\left(a_{m_{k}}\right)_{k \geq 1} 满足 ankAa_{n_{k}} \rightarrow Aamkaa_{m_{k}} \rightarrow a , kk \rightarrow \infty .

于是 ank+1/ankA+1/Aa_{n_{k}}+1 / a_{n_{k}} \rightarrow A+ 1 / A , amk+1/amka+1/aa_{m_{k}}+1 / a_{m_{k}} \rightarrow a+1 / a .

但是 (an+an1)n1\left(a_{n}+a_{n}^{-1}\right)_{n \geq 1} 收敛至 \ell . 有

=A+1A=a+1a\ell=A+\frac{1}{A}=a+\frac{1}{a} ,矛盾.

故只有A=a.A=a.\blacksquare


2022.8.13

【题】设实数列(xn)n1\left(x_{n}\right)_{n \geq 1} 满足 limn(x2n+x2n+1)=315\displaystyle\lim _{n \rightarrow \infty}\left(x_{2 n}+x_{2 n+1}\right)= 315limn(x2n+x2n1)=2003.\displaystyle\lim _{n \rightarrow \infty}\left(x_{2 n}+x_{2 n-1}\right)=2003 .

试求 limn(x2n/x2n+1).\displaystyle\lim _{n \rightarrow \infty}\left(x_{2 n} / x_{2 n+1}\right) .\blacktriangleright

\blacktriangleleft
an=x2na_{n}=x_{2 n}bn=x2n+1b_{n}=x_{2 n+1}

注意到

an+1anbn+1bn=(x2n+2+x2n+1)(x2n+1+x2n)(x2n+3+x2n+2)(x2n+2+x2n+1)20033153152003=1,n\frac{a_{n+1}-a_{n}}{b_{n+1}-b_{n}}=\frac{\left(x_{2 n+2}+x_{2 n+1}\right)-\left(x_{2 n+1}+x_{2 n}\right)}{\left(x_{2 n+3}+x_{2 n+2}\right)-\left(x_{2 n+2}+x_{2 n+1}\right)} \longrightarrow \frac{2003-315}{315-2003}=-1,n\to\infty

因此, 据 Stolz定理\mathbf{Stolz}定理, 该极限为 1-1 ..\blacksquare


2022.8.12

【题】试证明(p0)(p\geq0)

limn(11p22pnnp)1/np+1n1/(p+1)=e1/(p+1)2.\displaystyle\lim _{n \rightarrow \infty} \frac{\left(1^{1^{p}} \cdot 2^{2^{p}} \cdots n^{n^{p}}\right)^{1 / n^{p+1}}}{n^{1 /(p+1)}}=\mathrm{e}^{-1 /(p+1)^{2}}.\blacktriangleright

\blacktriangleleft

提示:对f(x)=xp+1lnxp+1xp+1(p+1)2f(x)=\frac{x^{p+1}\ln x}{p+1}-\frac{x^{p+1}}{(p+1)^2}在[k,k+1],1kn[k,k+1],1\leq k\leq n上用中值定理。

拓展:试考虑其差分极限值。


2022.8.11

【题】试求出下式最小值:

01x2(f(x))2dx01x2(f(x))2dx\frac{\int_{0}^{1} x^{2}\left(f^{\prime}(x)\right)^{2} d x}{\int_{0}^{1} x^{2}(f(x))^{2} d x}

其中ff为非零连续可导函数 f:[0,1]Rf:[0,1] \rightarrow \mathbb{R}f(1)=0.f(1)=0.\blacktriangleright

\blacktriangleleftAnswer..\blacksquare


2022.8.10

【题】
0<x0<π,xn=1nk=0n1sin(xk)0<x_{0}<\pi , x_{n}=\displaystyle\frac{1}{n} \sum_{k=0}^{n-1} \sin \left(x_{k}\right) .

试求
limnxnln(n).\displaystyle\lim _{n \rightarrow \infty} x_{n} \sqrt{\ln (n)}.\blacktriangleright

\blacktriangleleftAnswer..\blacksquare


2022.8.9

【题】试求
k=1(1)k+k+1k(k+1).\displaystyle\sum_{k=1}^{\infty} \frac{(-1)^{\lfloor\sqrt{k}+\sqrt{k+1}\rfloor}}{k(k+1)}.\blacktriangleright

\blacktriangleleftAnswer..\blacksquare


2022.8.8

【题】设函数f:Z+R+f: \mathbb{Z}^{+} \to \mathbb{R}^{+} 满足 limnf(n)/n=a,a>0.\displaystyle\lim _{n \rightarrow \infty} f(n) / n=a, a>0 .

试求

limn(k=1n+1f(k)n+1k=1nf(k)n).\displaystyle\lim _{n \rightarrow \infty}\left(\sqrt[n+1]{\prod_{k=1}^{n+1} f(k)}-\sqrt[n]{\prod_{k=1}^{n} f(k)}\right).\blacktriangleright

\blacktriangleleftAnswer..\blacksquare


2022.8.7

【题】试求

k=1(1+12++1klog(k)γ12k+112k2)\displaystyle\sum_{k=1}^{\infty}\left(1+\frac{1}{2}+\cdots+\frac{1}{k}-\log (k)-\gamma-\frac{1}{2 k}+\frac{1}{12 k^{2}}\right)

其中 γ\gamma 为欧拉常数.\blacktriangleright

\blacktriangleleftAnswer..\blacksquare


2022.8.6

【题】置L=limn01xn+(1x)nndxL=\displaystyle\lim _{n \rightarrow \infty} \int_{0}^{1} \sqrt[n]{x^{n}+(1-x)^{n}} d x.

(1)(1) 试求出 LL .

(2)(2) 试求 limnn2(01xn+(1x)nndxL).\displaystyle\lim _{n \rightarrow \infty} n^{2}\left(\int_{0}^{1} \sqrt[n]{x^{n}+(1-x)^{n}} d x-L\right).\blacktriangleright

\blacktriangleleftAnswer..\blacksquare


2022.8.5

【题】设二阶可导函数f:[0,1]Rf:[0,1] \to \mathbb{R}, ff''[0,1][0,1]上连续且1/32/3f(x)dx=0\int_{1 / 3}^{2 / 3} f(x) d x=0 .

试证明:

4860(01f(x)dx)21101(f(x))2dx.4860\left(\int_{0}^{1} f(x) d x\right)^{2} \leq 11 \int_{0}^{1}\left(f^{\prime \prime}(x)\right)^{2} d x.\blacktriangleright

\blacktriangleleftAnswer..\blacksquare


2022.8.4

【题】证明存在可微函数 f:RRf: \mathbb{R} \to \mathbb{R} 满足

2cos(x+f(x))cos(x)=1,xR.2 \cos (x+f(x))-\cos (x)=1 ,\forall x\in \mathbb{R}.f(π/2)=π/6.f(\pi / 2)=-\pi / 6.\blacktriangleright

\blacktriangleleftAnswer..\blacksquare


2022.8.3

【题】是否存在数列 {an}\{a_{n}\}使得 n=11/an\displaystyle\sum_{n=1}^{\infty} 1/a_{n}收敛, 且

k=1nak<nn,n1.\displaystyle\prod_{k=1}^{n} a_{k}<n^{n} ,\forall n\geq1.\blacktriangleright

\blacktriangleleftAnswer..\blacksquare


2022.8.2

【题】设 CnC_{n} 为第n个Catalan数, 即 Cn=1n+1(2nn)C_{n}=\frac{1}{n+1}\left(\begin{array}{c}2 n \\ n\end{array}\right) .

试证明:

(1) n=02nCn=5+3π2\displaystyle\sum_{n=0}^{\infty} \frac{2^{n}}{C_{n}}=5+\frac{3 \pi}{2}

(2) n=03nCn=22+83π.\displaystyle\sum_{n=0}^{\infty} \frac{3^{n}}{C_{n}}=22+8 \sqrt{3} \pi. \blacktriangleright

\blacktriangleleftAnswer..\blacksquare


2022.8.1

【题】试求极限:
limn(2n1)!!n(tan(π(n+1)!n+14n!n)1).\displaystyle\lim _{n \rightarrow \infty} \sqrt[n]{(2 n-1) ! !}\left(\tan \left(\frac{\pi \sqrt[n+1]{(n+1) !}}{4 \sqrt[n]{n !}}\right)-1\right).\blacktriangleright

\blacktriangleleftAnswer..\blacksquare


2022.7

2022.7.31

【题】给定实数列:an+1=exp(k=0nak)a_{n+1}=\exp \left(-\displaystyle\sum_{k=0}^{n} a_{k}\right) , n0n \geq 0. 初值a0>0a_0>0

试求bb值使得n=0(an)b\displaystyle\sum_{n=0}^{\infty}\left(a_{n}\right)^{b} 收敛.\blacktriangleright

\blacktriangleleftAnswer..\blacksquare


2022.7.30

【题】试求:

n=14nsin4(2nθ).\displaystyle\sum_{n=1}^{\infty} 4^{n} \sin ^{4}\left(2^{-n} \theta\right).\blacktriangleright

\blacktriangleleftAnswer..\blacksquare


2022.7.29

【题】试证明:

n=2((n21n2)2(n21)(n+1n1)n)=π.\displaystyle\prod_{n=2}^{\infty}\left(\left(\frac{n^{2}-1}{n^{2}}\right)^{2\left(n^{2}-1\right)}\left(\frac{n+1}{n-1}\right)^{n}\right)=\pi.\blacktriangleright

\blacktriangleleftAnswer..\blacksquare


2022.7.28

【题】试求:limn1nk=1n{nk}2\displaystyle\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n}\left\{\frac{n}{k}\right\}^{2},其中 {x}\{x\}为取小数部分.\blacktriangleright

\blacktriangleleftAnswer..\blacksquare


2022.7.27

【题】定义 Rk(n)R_{k}(n):

Rk(n)=22+2+2++2+nk square roots R_{k}(n)=\overbrace{\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2+\cdots+\sqrt{2+\sqrt{n}}}}}}}^{k \text { square roots }}

试证明limkRk(2)/Rk(3)=3/2.\displaystyle\lim _{k \rightarrow \infty} R_{k}(2) / R_{k}(3)=3 / 2.\blacktriangleright

\blacktriangleleftAnswer..\blacksquare


2022.7.26

【题】置数列{an,n1}\left\{a_{n}, n \geq 1\right\}[(n+1)an]=[nan+1],n1\left[(n+1) a_{n}\right]=\left[n a_{n+1}\right], n \geq 1 (其中 [x][x] 为取整).

试证明存在 cRc \in \mathbb{R} 使得对于每个n1n \geq 1ancn<1.\left|a_{n}-c n\right|<1.\blacktriangleright

\blacktriangleleftbn=ann,n1b_{n}=\frac{a_{n}}{n}, n \geq 1 . 得

[n(n+1)bn]=[n(n+1)bn+1],n1\left[n(n+1) b_{n}\right]=\left[n(n+1) b_{n+1}\right], n \geq 1 .

于是 n(n+1)bnn(n+1)bn+1<1,i.e.,bnbn+1<1n(n+1),n1\left|n(n+1) b_{n}-n(n+1) b_{n+1}\right|<1 , i.e., \left|b_{n}-b_{n+1}\right|<\frac{1}{n(n+1)}, n \geq 1.

n1,p1\forall n \geq 1, p \geq 1 , 有

bn+pbnbn+1bn++bn+pbn+p1<1n(n+1)++1(n+p1)(n+p)=1n1n+p<1n0, as n.\begin{aligned} \left|b_{n+p}-b_{n}\right| & \leq\left|b_{n+1}-b_{n}\right|+\ldots+\left|b_{n+p}-b_{n+p-1}\right| \\ \quad & <\frac{1}{n(n+1)}+\ldots+\frac{1}{(n+p-1)(n+p)}=\frac{1}{n}-\frac{1}{n+p}<\frac{1}{n} \rightarrow 0, \text { as } n \rightarrow \infty . \end{aligned}

因此{bn}\left\{b_{n}\right\} 收敛. 记c=limnbnc=\displaystyle\lim _{n \rightarrow \infty} b_{n} .

1\forall \geq 1, 我们有 bnc=limpbn+pbn1n\left|b_{n}-c\right|=\displaystyle\lim _{p \rightarrow \infty}\left|b_{n+p}-b_{n}\right| \leq \frac{1}{n} .

因此

bncbnbn+1+bn+1c<1n(n+1)+1n+1=1n\left|b_{n}-c\right| \leq\left|b_{n}-b_{n+1}\right|+\left|b_{n+1}-c\right|<\frac{1}{n(n+1)}+\frac{1}{n+1}=\frac{1}{n} .

annc<1n,i.e.,ancn<1,n1.\left|\frac{a_{n}}{n}-c\right|<\frac{1}{n} , i.e., \left|a_{n}-c n\right|<1, n \geq 1.\blacksquare


2022.7.25

【题】判断下列积分的敛散性:

0sinxx+lnxdx.\int_{0}^{\infty} \frac{\sin x }{x+\ln x}\,\mathrm{d}x. \blacktriangleright

\blacktriangleleft本题要注意的是瑕点的隐蔽性.

f(x)=x+lnx,x(0,1]f(x)=x+\ln x, x \in(0,1] . 因 limx0+f(x)=\displaystyle\lim _{x \rightarrow 0+} f(x)= -\inftyf(1)=1f(1)=1 , 由介值性知 a(0,1),s.t.f(a)=0\exists a \in(0,1), s.t. f(a)=0 . 显然 sina0\sin a \neq 0, f(a)=1+1a0f^{\prime}(a)=1+\frac{1}{a} \neq 0 , 因此 sinxx+lnxsina(xa)f(a)\frac{\sin x}{x+\ln x} \sim \frac{\sin a}{(x-a) f^{\prime}(a)} , xax \rightarrow a , 又由a1dxxa\int_{a}^{1} \frac{d x}{x-a} 是发散的,故原积分亦是发散的..\blacksquare


2022.7.24

【题】证明不等式:

234nn43<2,n2.\sqrt{2 \sqrt[3]{3 \sqrt[4]{4 \ldots \sqrt[n]{n}}}}<2, n \geq 2. \blacktriangleright

\blacktriangleleft 等价于

k=2n1k!lnk<ln2,n2\displaystyle\sum_{k=2}^{n} \frac{1}{k !} \ln k<\ln 2, n \geq 2 .

Jensens  inequality\mathbf{Jensen's \ \ inequality} 我们有

k=2n1k!lnkk=2n1k!lnk=2n1k!kk=2n1k!=k=2n1k!ln(k=1n11k!k=2n1k!)\displaystyle\sum_{k=2}^{n} \frac{1}{k !} \ln k \leq \sum_{k=2}^{n} \frac{1}{k !} \cdot \ln \frac{\sum_{k=2}^{n} \frac{1}{k !} \cdot k}{\sum_{k=2}^{n} \frac{1}{k !}}=\sum_{k=2}^{n} \frac{1}{k !} \ln \left(\frac{\sum_{k=1}^{n-1} \frac{1}{k !}}{\sum_{k=2}^{n} \frac{1}{k !}}\right) .

注意 k=2n1k!lnk\sum_{k=2}^{n} \frac{1}{k !} \ln k 是严增的, 从而得到

k=2n1k!lnk<k=21k!lnklimnk=2n1k!ln(k=1n11k!k=2n1k!)=k=21k!ln(k=11k!k=21k!)=(e2)lne1e2=(e2)ln(1+1e2)\begin{aligned} \sum_{k=2}^{n} \frac{1}{k !} \ln k &<\sum_{k=2}^{\infty} \frac{1}{k !} \ln k \\ & \leq \lim _{n \rightarrow \infty} \sum_{k=2}^{n} \frac{1}{k !} \ln \left(\frac{\sum_{k=1}^{n-1} \frac{1}{k !}}{\sum_{k=2}^{n} \frac{1}{k !}}\right)=\sum_{k=2}^{\infty} \frac{1}{k !} \ln \left(\frac{\sum_{k=1}^{\infty} \frac{1}{k !}}{\sum_{k=2}^{\infty} \frac{1}{k !}}\right)\\ &=(e-2) \ln \frac{e-1}{e-2}=(e-2) \ln \left(1+\frac{1}{e-2}\right) \end{aligned}

即转证

(e2)ln(1+1e2)<ln2,(1+1e2)e2<2(e-2) \ln \left(1+\frac{1}{e-2}\right)<\ln 2,\left(1+\frac{1}{e-2}\right)^{e-2}<2

a>1a>-1y(x)=(1+a)xy(x)=(1+a)^{x}R\mathbb{R}上是凹的 , 因此对 x(0,1)x \in(0,1) 它在 y=1+axy=1+a x之下 , 即 (1+a)x<1+ax,0<x<1(1+a)^{x}<1+a x, 0<x<1 .

(1+1e2)e2<1+e2e2=2.\left(1+\frac{1}{e-2}\right)^{e-2}<1+\frac{e-2}{e-2}=2 .\blacksquare


2022.7.23

【题】试证明:kN,ak=j=1jkj!Q.\forall k\in\mathbb{N},a_k=\displaystyle\sum_{j=1}^{\infty}\frac{j^{k}}{j!}\notin \mathbb{Q}.\blacktriangleright

\blacktriangleleft 考虑证明 ake\frac{a_k}{e} 是整数.

首先已有 a1=ea_{1}=e . 假定 ak=ebk,kna_{k}=e \cdot b_{k}, k \leq n , 其中 bkb_{k} 是某整数 .

于是

an+1=j=1jn+1j!=j=1jn(j1)!=j=0(j+1)nj!=j=1m=0n(nm)jmj!=m=0n(nm)j=0jmj!=e+m=1n(nm)j=1jmjm=e+m=1n(nm)am=e(1+m=1n(nm)bm)\begin{aligned} a_{n+1} &=\sum_{j=1}^{\infty} \frac{j^{n+1}}{j !}=\sum_{j=1}^{\infty} \frac{j^{n}}{(j-1) !}=\sum_{j=0}^{\infty} \frac{(j+1)^{n}}{j !}\\ &=\sum_{j=1}^{\infty} \sum_{m=0}^{n}\left(\begin{array}{l} n \\ m \end{array}\right) \frac{j^{m}}{j !}=\sum_{m=0}^{n}\left(\begin{array}{c} n \\ m \end{array}\right) \cdot \sum_{j=0}^{\infty} \frac{j^{m}}{j !}=e+\sum_{m=1}^{n}\left(\begin{array}{c} n \\ m \end{array}\right) \cdot \sum_{j=1}^{\infty} \frac{j^{m}}{j^{m}}\\ &=e+\sum_{m=1}^{n}\left(\begin{array}{l} n \\ m \end{array}\right) a_{m}=e\left(1+\sum_{m=1}^{n}\left(\begin{array}{c} n \\ m \end{array}\right) b_{m}\right) \end{aligned}

所以 an+1e\frac{a_{n+1}}{e} 是整数,因此akQ,k1.a_{k} \notin \mathbb{Q}, k \geq 1 .\blacksquare


2022.7.22

【题】定义数列{xn},n1\{x_n\},n\geq1:x1=a,xn+1=xn33xn.x_1=a,x_{n+1}=x_n^3-3x_n.

试找出所有实数aa使得数列收敛.\blacktriangleright

\blacktriangleleftf(x)=x33xf(x)=x^{3}-3 x . 假定数列收敛至 \ell . 则 f()=f(\ell)=\ell .

因此, {0,±2}\ell \in\{0, \pm 2\} . 注意到在不动点\ell邻域均有 f(x)>1\left|f^{\prime}(x)\right|>1 .

NN\exists N \in \mathbb{N}nN\forall n \geq N, 对于在这个邻域的 xnx_{n} , 如果 xnx_{n} \neq \ell 根据中值定理我们有

xn+1=f(xn)f()=f(θ)xn>xn\left|x_{n+1}-\ell\right|=\left|f\left(x_{n}\right)-f(\ell)\right|=\left|f^{\prime}(\theta)\right| \cdot\left|x_{n}-\ell\right|>\left|x_{n}-\ell\right| .

因此数列收敛当且仅当对于某些 nnxn=x_{n}=\ell .

如果 a>2|a|>2 那么不难证明 xn+1>xn>2,n1\left|x_{n+1}\right|>\left|x_{n}\right|>2, n \geq 1 ,故舍.

因此, a2|a| \leq 2 . 我们置 x1=a=2cosφx_{1}=a=2 \cos \varphi , 可得 xn=2cos3n1φ,n1x_{n}=2 \cos 3^{n-1} \varphi, n \geq 1 .

即解方程 2cos3n1φ=2 \cos 3^{n-1} \varphi=\ell , 其中 =0,±2\ell=0 , \pm 2 .

最终得到解 a=2cosπk23n1,k,nN.a=2 \cos \frac{\pi k}{2 \cdot 3^{n-1}}, k, n \in \mathbb{N}. \blacksquare


2022.7.21

【题】试求极限:limn(01ex2ndx)n.\displaystyle\lim_{n\to \infty}\left(\int_0^1e^{\frac{x^2}{n}}\,\mathrm{d}x\right)^n.\blacktriangleright

\blacktriangleleft 不难证明 n,01ex2ndx1+13n+O(1n2)n\to\infty,\int_0^1e^{\frac{x^2}{n}}\,\mathrm{d}x\sim1+\frac{1}{3n}+\mathcal{O}\left(\frac{1}{n^2}\right)

由此可得limn(01ex2ndx)n=e13.\displaystyle\lim_{n\to \infty}\left(\int_0^1e^{\frac{x^2}{n}}\,\mathrm{d}x\right)^n=e^{\frac{1}{3}}.\blacksquare


2022.7.20

【题】求满足以下条件的所有连续函数 f:RR:f: \mathbb{R} \rightarrow \mathbb{R}: 对所有 xR,(fff)(x)=x.x \in \mathbb{R} , (f \circ f \circ f)(x)=x.\blacktriangleright

\blacktriangleleftf(x1)=f(x2)f\left(x_{1}\right)=f\left(x_{2}\right) , 则 x1=f(f(f(x1)))=f(f(f(x2)))=x2x_{1}=f\left(f\left(f\left(x_{1}\right)\right)\right)=f\left(f\left(f\left(x_{2}\right)\right)\right)=x_{2} , 这证明了 ff 是一对一的.

因此 ff 是连续双射函数, 从而一定是严格单调的.

ff 递减, 则 fff \circ f 递增, ffff \circ f \circ f 递减, 与题设矛盾. 因此 ff 严格递增.

固定 xx , 比较 f(x)f(x)xx . 有 33 种可能性.

首先可能有 f(x)>xf(x)>x . 单调性蕴涵 f(f(x))>f(x)>xf(f(x))>f(x)>x , 然而 x=f(f(f(x)))>f(f(x))>f(x)>xx=f(f(f(x)))> f(f(x))>f(x)>x , 矛盾.

还可能有 f(x)<xf(x)<x , 这蕴涵 f(f(x))<f(x)<xf(f(x))< f(x)<x, x=f(f(f(x)))<f(f(x))<f(x)<xx=f(f(f(x)))<f(f(x))<f(x)<x , 这也不可能.

因此 f(x)=xf(x)=x . 因 xx 是任意的, 故这证明了函数方程的唯一解是恒等函数 f(x)=x.f(x)=x. \blacksquare


2022.7.19

【题】证明:

ex2cosax dx=πea2/4,a>0.\int_{-\infty}^{\infty} \mathrm{e}^{-x^{2}} \cos a x \mathrm{~d} x=\sqrt{\pi} \mathrm{e}^{-a^{2} / 4},a>0.\blacktriangleright

\blacktriangleleft

cosax=1(ax)22!+(ax)44!(ax)66!+\cos a x=1-\frac{(a x)^{2}}{2 !}+\frac{(a x)^{4}}{4 !}-\frac{(a x)^{6}}{6 !}+\cdots

ex2x2n dx=In\int_{-\infty}^{\infty} \mathrm{e}^{-x^{2}} x^{2 n} \mathrm{~d} x=I_{n} .

则用分部积分法得出递推公式 In=2n12In1I_{n}=\frac{2 n-1}{2} I_{n-1} .

I0=ex2 dx=πI_{0}=\int_{-\infty}^{\infty} \mathrm{e}^{-x^{2}} \mathrm{~d} x=\sqrt{\pi}

In=(2n)!π4nn!I_{n}=\frac{(2 n) ! \sqrt{\pi}}{4^{n} n !}

可见所要求的积分等于

n=0(1)na2n(2n)!(2n)!π4nn!=πn=0(a24)nn!=πea2/4\displaystyle\sum_{n=0}^{\infty}(-1)^{n} \frac{a^{2 n}}{(2 n) !} \cdot \frac{(2 n) ! \sqrt{\pi}}{4^{n} n !}=\sqrt{\pi} \sum_{n=0}^{\infty} \frac{\left(-\frac{a^{2}}{4}\right)^{n}}{n !}=\sqrt{\pi} \mathrm{e}^{-a^{2} / 4} .

还需要说明一件事: 为何允许先展开然后求积分的和? 这是因为由各项绝对值积分组成的级数本身收敛:

n=1a2n(2n)!ex2x2n=π1(a24)nn!=πea2/4<.\displaystyle\sum_{n=1}^{\infty} \frac{a^{2 n}}{(2 n) !} \int_{-\infty}^{\infty} \mathrm{e}^{-x^{2}} x^{2 n}=\sqrt{\pi} \sum_{1}^{\infty} \frac{\left(\frac{a^{2}}{4}\right)^{n}}{n !}=\sqrt{\pi} \mathrm{e}^{a^{2 / 4}}<\infty. \blacksquare


2022.7.18

【题】求满足下式的连续函数 f:[0,1]Rf:[0,1] \rightarrow \mathbb{R} :

01f(x)(xf(x))dx=112\int_{0}^{1} f(x)(x-f(x)) \mathrm{d} x=\frac{1}{12} . \blacktriangleright

\blacktriangleleft将题目中的关系式改写为

01(xf(x)f2(x))dx=01x24 dx\int_{0}^{1}\left(x f(x)-f^{2}(x)\right) \mathrm{d} x=\int_{0}^{1} \frac{x^{2}}{4} \mathrm{~d} x

移项得

01(f2(x)xf(x)+x24)dx=0\int_{0}^{1}\left(f^{2}(x)-x f(x)+\frac{x^{2}}{4}\right) \mathrm{d} x=0

配方得

01(f(x)x2)2 dx=0\int_{0}^{1}\left(f(x)-\frac{x}{2}\right)^{2} \mathrm{~d} x=0

因非负连续函数 (f(x)x2)2\left(f(x)-\frac{x}{2}\right)^{2} 是严格正的, 除了函数恒等于 00 . 可见满足题目条件的唯一函数是 f(x)=x2,x[0,1].f(x)=\frac{x}{2}, x \in[0,1] . \blacksquare


2022.7.17

【题】试证明下列方程的实解只有两个: 4x+6x2=5x+5x24^{x}+6^{x^2}=5^x+5^{x^2} . \blacktriangleright

\blacktriangleleft首先注意到x=1,x=0x=1,x=0是方程的两个解,下面证明没有第三个解。

考虑函数f(t)=tx2+(10t)xf(t)=t^{x^2}+(10-t)^x. 由题设得f(5)=f(6)f(5)=f(6). 根据Rolle\mathbf{Rolle}定理,c(5,6),s.t.f(c)=0\exists c\in (5,6),s.t.f'(c)=0

xcx21=(10c)x1xc^{x^2-1}=(10-c)^{x-1}, 这表明x>0x>0.

x>1x>1 , 则 xcx21>cx21>cx1>(10c)x1x c^{x^{2}-1}>c^{x^{2}-1}>c^{x-1}>(10-c)^{x-1} , 这是不可能的, 因为在这不等式链中, 第1项与最后的项相等. 这里利用了事实c>5c>5.

0<x<10<x<1 , 则 xcx21<xcx1x c^{x^{2}-1}<x c^{x-1} . 我们来证明 xcx1<(10c)x1x c^{x-1}<(10-c)^{x-1} . 作代换 y=x1,y(1,0)y=x-1, y \in(-1,0) , 不等式可改写为 y+1<(10cc)yy+1<\left(\frac{10-c}{c}\right)^{y} . 指数的底数小于 11 , 从而它递减, 而左边的线性函数递增. 两边在 y=0y=0 时相等. 推出不等式. 利用它我们再断定 xcx21(10c)x1x c^{x^{2}-1} \neq(10-c)^{x-1} . 这证明了题目中的方程的第3个解不存在. 因此已知方程的唯一解是x=0x=0x=1.x=1. \blacksquare


2022.7.16

【题】令 xx 是实数, 定义数列 (xn)n1\left(x_{n}\right)_{n \geqslant 1} , x1=1x_{1}=1 , 对 n1n \geqslant 1 , xn+1=xn+nxnx_{n+1}=x^{n}+n x_{n} .

试求:n=1(1xnxn+1)\displaystyle\prod_{n=1}^{\infty}\left(1-\frac{x^{n}}{x_{n+1}}\right) . \blacktriangleright

\blacktriangleleftPN=n=1N(1xnxn+1)=n=1N(xn+1xnxn+1)=n=1N(nxnxn+1)=N!xN+1P_{N}=\displaystyle\prod_{n=1}^{N}\left(1-\frac{x^{n}}{x_{n+1}}\right)=\prod_{n=1}^{N}\left(\frac{x_{n+1}-x^{n}}{x_{n+1}}\right)=\prod_{n=1}^{N}\left({\frac{nx_n}{x_{n+1}}}\right)=\frac{N!}{x_{N+1}}

于是

1Pn+11Pn=xn+2(n+1)!xn+1n!=xn+2(n+1)xn+1(n+1)!=xn+1(n+1)!,n1\frac{1}{P_{n+1}}-\frac{1}{P_{n}}=\frac{x_{n+2}}{(n+1) !}-\frac{x_{n+1}}{n !}=\frac{x_{n+2}-(n+1) x_{n+1}}{(n+1) !}=\frac{x^{n+1}}{(n+1) !}, n \geqslant 1

因此

1PN+1=1P1+n=1N(1Pn+11Pn)=1+x1!+x22!++xN+1(N+1)!ex,N\frac{1}{P_{N+1}}=\frac{1}{P_1}+\displaystyle\sum_{n=1}^{N}\left(\frac{1}{P_{n+1}}-\frac{1}{P_{n}}\right)=1+\frac{x}{1 !}+\frac{x^{2}}{2 !}+\cdots+\frac{x^{N+1}}{(N+1) !}\to e^{x},N\to \infty

故得

n=1(1xnxn+1)=ex.\displaystyle\prod_{n=1}^{\infty}\left(1-\frac{x^{n}}{x_{n+1}}\right)=e^{-x}. \blacksquare


2022.7.15

【题】 已知数列{an}:1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,\{a_n\}:1,2,2,3,3,3,4,4,4,4,5,5,5,5,5, \cdots

试求limnann\displaystyle\lim _{n\to \infty}\frac{a_n}{\sqrt{n} } . \blacktriangleright

\blacktriangleleft研究这个数列, 可见恰好对满足下式的 mm :

n2n2+1mn2+n2\frac{n^{2}-n}{2}+1 \leqslant m \leqslant \frac{n^{2}+n}{2}

数列的第 mm 项是 nn . 因 mmnn 是整数, 故不等式等价于

n2n+14<2m<n2+n+14n^{2}-n+\frac{1}{4}<2 m<n^{2}+n+\frac{1}{4} ,求平方根得

n12<2m<n+12n-\frac{1}{2}<\sqrt{2 m}<n+\frac{1}{2} , 即 n<2m+12<n+1n<\sqrt{2 m}+\frac{1}{2}<n+1.

现在当且仅当 n=2m+12n=\left\lfloor\sqrt{2 m}+\frac{1}{2}\right\rfloor 时上式成立, 于是给出了数列通项公式

am=2m+12,m1a_{m}=\left\lfloor\sqrt{2 m}+\frac{1}{2}\right\rfloor, m \geqslant 1.

从而limnann=2\displaystyle\lim _{n\to \infty}\frac{a_n}{\sqrt{n} }=\sqrt{2}. \blacksquare


2022.7.14

【题】 若 x+y+z=0x+y+z=0 , 证明:

x2+y2+z22x5+y5+z55=x7+y7+z77\frac{x^{2}+y^{2}+z^{2}}{2} \cdot \frac{x^{5}+y^{5}+z^{5}}{5}=\frac{x^{7}+y^{7}+z^{7}}{7}. \blacktriangleright

\blacktriangleleft考虑多项式 P(t)=t3+pt+qP(t)=t^{3}+p t+q , 它的零点是 x,y,zx, y, z .

于是x2+y2+z2=(x+y+z)22(xy+zx+yz)=2px^{2}+y^{2}+z^{2}=(x+y+z)^{2}-2(x y+z x+y z)=-2 p , 把x3=pxq,y3=pyq,z3=pzqx^{3}=-p x-q, y^{3}=-p y-q, z^{3}=-p z-q , 相加得

x3+y3+z3=3qx^{3}+y^{3}+z^{3}=-3 q,类似地(各乘x,y,zx,y,z后相加)

x4+y4+z4=p(x2+y2+z2)q(x+y+z)=2p2x^{4}+y^{4}+z^{4}=-p\left(x^{2}+y^{2}+z^{2}\right)-q(x+y+z)=2 p^{2}

因此

x5+y5+z5=p(x3+y3+z3)q(x2+y2+z2)=5pqx7+y7+z7=p(x5+y5+z5)q(x4+y4+z4)=5p2q2p2q=7p2q\begin{aligned} x^{5}+y^{5}+z^{5}&=-p\left(x^{3}+y^{3}+z^{3}\right)-q\left(x^{2}+y^{2}+z^{2}\right)=5 p q \\ x^{7}+y^{7}+z^{7}&=-p\left(x^{5}+y^{5}+z^{5}\right)-q\left(x^{4}+y^{4}+z^{4}\right) \\ &=-5 p^{2} q-2 p^{2} q=-7 p^{2} q \end{aligned}

于是目中的关系式化为明显的

2p25pq5=7p2q7.\frac{-2 p}{2} \cdot \frac{5 p q}{5}=\frac{-7 p^{2} q}{7}.\blacksquare


2022.7.13

【题】设 λ1,,λn\lambda_{1}, \cdots, \lambda_{n} 为不同的实数, 且不同于 0,1,2,,(n1)0,-1,-2,\cdots,-(n-1). 试证明下列行列式不为零

1λ11λ21λn1λ1+11λ2+11λn+11λ1+n11λ2+n11λn+n1\left|\begin{array}{cccc} \frac{1}{\lambda_{1}} & \frac{1}{\lambda_{2}} & \cdots & \frac{1}{\lambda_{n}} \\ \frac{1}{\lambda_{1}+1} & \frac{1}{\lambda_{2}+1} & \cdots & \frac{1}{\lambda_{n}+1} \\ \vdots & \vdots & & \vdots \\ \frac{1}{\lambda_{1}+n-1} & \frac{1}{\lambda_{2}+n-1} & \cdots & \frac{1}{\lambda_{n}+n-1} \end{array}\right|

\blacktriangleright

\blacktriangleleft反证法.假设该行列式等于零. 那么, 它是线性相关的.

即存在不全为零的系数 c0,c1,,cn1c_{0}, c_{1}, \cdots, c_{n-1} , 对所有 i=1,2,,ni=1,2, \cdots, n

c0λi+c1λi+1+c2λi+2++cn1λi+(n1)=0\frac{c_{0}}{\lambda_{i}}+\frac{c_{1}}{\lambda_{i}+1}+\frac{c_{2}}{\lambda_{i}+2}+\cdots+\frac{c_{n-1}}{\lambda_{i}+(n-1)}=0

考虑函数f(λ)=c0λ+c1λ+1++cn1λ+(n1)f(\lambda)=\frac{c_{0}}{\lambda}+\frac{c_{1}}{\lambda+1}+\cdots+\frac{c_{n-1}}{\lambda+(n-1)}

通分得f(λ)=P(λ)λ(λ+1)(λ+(n1))f(\lambda)=\frac{P(\lambda)}{\lambda(\lambda+1) \cdots(\lambda+(n-1))}

其中 P(λ)P(\lambda) 是关于 λ\lambda 的次数不超过 n1n-1 的多项式.

f(λi)=0f(\lambda_{i})=0. 且 λi0,1,,(n1)\lambda_{i} \neq 0,-1, \cdots,-(n-1) , 则 P(λi)=0P\left(\lambda_{i}\right)=0 ,
即数 λ1,,λn\lambda_{1}, \cdots, \lambda_{n} 是多项式 P(λ)P(\lambda) 的根. 但多项式次数不超过 n1n-1 , 如果它不恒等于零的话, 就不可能有 n 个不同的根.

因此, P(λ)0P(\lambda) \equiv 0 , 当 λ0,1,,(n1),f(λ)=0\lambda \neq 0,-1, \cdots,-(n-1), f(\lambda)=0 .由此得到,所有数 cic_{i} 等于零.

事实上, 若 ci0c_{i} \neq 0 , 则当 λi,ciλ+i±,f(λ)\lambda \rightarrow-i, \frac{c_{i}}{\lambda+i} \rightarrow \pm \infty, f(\lambda) \rightarrow \inftyf(λ)=0f(\lambda)=0 相矛盾. 于是, 我们证明了所有 cic_{i} 等于零, 这与假设相矛盾. \blacksquare


2022.7.12

【题】试求limt0+n=1en2tnlnt\displaystyle\lim _{t \rightarrow 0^{+}} \frac{\displaystyle\sum_{n=1}^{\infty} \frac{\mathrm{e}^{-n^{2} t}}{n}}{\ln t} \blacktriangleright

\blacktriangleleft

由级数收敛的积分判别法的证明可得

0n=1en2tn1+ex2tx dx10 \leqslant \displaystyle\sum_{n=1}^{\infty} \frac{\mathrm{e}^{-n^{2} t}}{n}-\int_{1}^{+\infty} \frac{\mathrm{e}^{-x^{2} t}}{x} \mathrm{~d} x \leqslant 1

n=1en2tnt0+1+ex2tx dx=t+ey2y dy=t1dxx+t1ex21x dx+1+ex2x dx\begin{aligned} \displaystyle\sum_{n=1}^{\infty} \frac{\mathrm{e}^{-n^{2} t}}{n} & \underset{t \rightarrow 0^{+}}{\sim} \int_{1}^{+\infty} \frac{\mathrm{e}^{-x^{2} t}}{x} \mathrm{~d} x \\ & =\int_{\sqrt{t}}^{+\infty} \frac{\mathrm{e}^{-y^{2}}}{y} \mathrm{~d} y \\ &= \int_{\sqrt{t}}^{1} \frac{\mathrm{d} x}{x}+\int_{\sqrt{t}}^{1} \frac{\mathrm{e}^{-x^{2}}-1}{x} \mathrm{~d} x+\int_{1}^{+\infty} \frac{\mathrm{e}^{-x^{2}}}{x} \mathrm{~d} x \end{aligned}

不难证明第二个和第三个积分当 t0+t \rightarrow 0^{+} 时收敛.

于是

limt0+n=1en2tnlnt=limt0+t1dxxlnt=12.\displaystyle\lim _{t \rightarrow 0^{+}} \frac{\displaystyle\sum_{n=1}^{\infty} \frac{\mathrm{e}^{-n^{2} t}}{n}}{\ln t}=\lim _{t \rightarrow 0^{+}} \frac{\int_{\sqrt{t}}^{1} \frac{\mathrm{d} x}{x}}{\ln t}=-\frac{1}{2}. \blacksquare


2022.7.11

【题】用 MM 表示使级数 n=0sin(n!πx)\displaystyle\sum_{n=0}^{\infty} \sin (n ! \pi x) 收敛的点集, xRx \in \mathbb{R} . 试证明:

  1. MM 处处稠密.

  2. eMe \in M. \blacktriangleright

\blacktriangleleft

  1. 任意区间都含有有理点 x=pqx=\frac{p}{q} , 当 nqn \geqslant q 时, 有 n!x=q(q1)!(q+1),nZn ! x= q(q-1) !(q+1) \cdots, n \in \mathbb{Z} . 即有 sin(n!πx)=0\sin (n ! \pi x)=0 .
    因此对上述有理点xx,级数n=0sin(n!πx)\displaystyle\sum_{n=0}^{\infty} \sin (n ! \pi x) 收敛,故MM处处稠密. \blacksquare

  2. 首先 n!e=k=0n!k!=k=0n2n!k!+(n+1)+1n+1+k=n+2n!k!(n2)n!\mathrm{e}=\displaystyle\sum_{k=0}^{\infty} \frac{n!}{k!}=\displaystyle\sum_{k=0}^{n-2} \frac{n!}{k!}+(n+1)+\frac{1}{n+1}+\sum_{k=n+2}^{\infty}\frac{n!}{k!}(n\geqslant 2)

注意到k=0n2n!k!=n(n1)k=0n2(n2)!k!\displaystyle\sum_{k=0}^{n-2} \frac{n !}{k !}=n(n-1) \sum_{k=0}^{n-2} \frac{(n-2) !}{k !}是偶数,而
k=n+2n!k!=1(n+1)(n+2)+1(n+1)(n+2)(n+3)++1(n+1)(n+2)(n+L)+m=01(n+1)(n+2)(n+3)m=n+3(n+1)(n+2)2=O(1n2) \begin{aligned}\displaystyle\sum_{k=n+2}^{\infty} \frac{n !}{k !}=& \frac{1}{(n+1)(n+2)}+\frac{1}{(n+1)(n+2)(n+3)}+\cdots+\\ & \frac{1}{(n+1)(n+2) \cdots(n+L)}+\cdots \leqslant \\ & \sum_{m=0}^{\infty} \frac{1}{(n+1)(n+2)(n+3)^{m}}=\\ & \frac{n+3}{(n+1)(n+2)^{2}}=O\left(\frac{1}{n^{2}}\right) \end{aligned}

于是
sin(n!πe)=sin(i=0n2πn!k!+π(n+1)+πn+1+πk=n+2n!k!)=sin(π(n+1)+πn+1+πk=n+2n!k!)=sin(π(n+1)+πn+1)+θn=(1)n+1sinπn+1+θn\begin{aligned} \sin (n ! \pi \mathrm{e})&= \sin \left(\displaystyle\sum_{i=0}^{n-2} \frac{\pi n !}{k !}+\pi(n+1)+\frac{\pi}{n+1}+\pi \sum_{k=n+2}^{\infty} \frac{n !}{k !}\right) \\ &= \sin \left(\pi(n+1)+\frac{\pi}{n+1}+\pi \sum_{k=n+2}^{\infty} \frac{n !}{k !}\right)\\ &= \sin \left(\pi(n+1)+\frac{\pi}{n+1}\right)+\theta_{n}\\ &=(-1)^{n+1} \sin \frac{\pi}{n+1}+\theta_{n} \end{aligned}

其中,θnπk=n+2n!k!=O(1n2)\left|\theta_{n}\right| \leqslant \pi \displaystyle\sum_{k=n+2}^{\infty} \frac{n !}{k !}=O\left(\frac{1}{n^{2}}\right)

得到n=0sin(n!πe)=2sinπe+n=2(1)n+1sinπn+1+n=2θn\displaystyle\sum_{n=0}^{\infty} \sin (n ! \pi e)=2 \sin \pi e+\sum_{n=2}^{\infty}(-1)^{n+1} \sin \frac{\pi}{n+1}+\sum_{n=2}^{\infty} \theta_{n}

由莱布尼茨判别法,级数n=2(1)n+1sinπn+1\displaystyle\sum_{n=2}^{\infty}(-1)^{n+1} \sin \frac{\pi}{n+1}收敛.
而级数 n=2θn=n=2O(1n2)\displaystyle\sum_{n=2}^{\infty} \theta_{n}=\sum_{n=2}^{\infty} O\left(\frac{1}{n^{2}}\right) 绝对收敛.
因此级数 n=0sin(n!πe)\displaystyle\sum^{\infty}_{n=0} \sin (n ! \pi \mathrm{e}) 是收敛的, 即eM\mathrm{e} \in M .\blacksquare


2022.7.10

【题】试证明n=1(1)[2nx]2n=1+2[x]2x,x0\displaystyle\sum_{n=1}^{\infty} \frac{(-1)^{\left[2^{n} x\right]}}{2^{n}}=1+2[x]-2x,x\geq 0. \blacktriangleright

\blacktriangleleftx=(akak1a0.b1b2)2x=(\overline{a_{k}a_{k-1}\cdots a_0 .b_1b_2\cdots })_2xx的标准二进制表示,则对于nN+\forall n\in\mathbb{N_{+}},有

[2nx]=(akak1a0b1b2bn)2bn(mod2)[2^nx]=(\overline{a_{k}a_{k-1}\cdots a_0 b_1b_2\cdots b_n})_2\equiv b_n(\mod2),

考虑到bn{0,1}b_n\in\{0,1\},故必有(1)[2nx]=(1)bn=12bn(-1)^{[2^nx]}=(-1)^{b_n}=1-2b_n,从而

n=1(1)[2nx]2n=n=112bn2n=n=112n2n=1bn2n=12(0.b1b2)2=12(x[x])=1+2[x]2x.\begin{aligned} \displaystyle\sum_{n=1}^{\infty} \frac{(-1)^{\left[2^{n} x\right]}}{2^{n}} &=\displaystyle\sum_{n=1}^{\infty} \frac{1-2b_n}{2^{n}} =\displaystyle\sum_{n=1}^{\infty}\frac{1}{2^n}-2\displaystyle\sum_{n=1}^{\infty} \frac{b_n}{2^n} \\ &=1-2(\overline{0.b_1 b_2\cdots})_2 =1-2(x-[x])=1+2[x]-2x .\blacksquare \end{aligned}


使用搜索:谷歌必应百度