数专竞赛,备赛参考.
2022.9
2022.9.11
【题】
设 N ( 0 , 0 , 1 ) N(0,0,1) N ( 0 , 0 , 1 ) 是球面 S : x 2 + y 2 + z 2 = 1 S: x^{2}+y^{2}+z^{2}=1 S : x 2 + y 2 + z 2 = 1 的北极点.
A ( a 1 , a 2 , 0 ) , B ( b 1 , b 2 , 0 ) , C ( c 1 , c 2 , 0 ) A\left(a_{1}, a_{2}, 0\right), B\left(b_{1}, b_{2}, 0\right), C\left(c_{1}, c_{2}, 0\right) A ( a 1 , a 2 , 0 ) , B ( b 1 , b 2 , 0 ) , C ( c 1 , c 2 , 0 ) 为 x O y x O y x O y 面上不同的三点.
设连接 N N N 与 A , B , C A, B, C A , B , C 的三直线依次交球面 S S S 于点 A 1 , B 1 , C 1 A_{1}, B_{1}, C_{1} A 1 , B 1 , C 1 .
( 1 ) (1) ( 1 ) 求连接 N \boldsymbol{N} N 与 A \boldsymbol{A} A 两点的直线方程;
(2) 求点 A 1 , B 1 , C 1 A_{1}, B_{1}, C_{1} A 1 , B 1 , C 1 三点的坐标;
(3) 给定点 A ( 1 , − 1 , 0 ) , B ( − 1 , 1 , 0 ) , C ( 1 , 1 , 0 ) A(1,-1,0), B(-1,1,0), C(1,1,0) A ( 1 , − 1 , 0 ) , B ( − 1 , 1 , 0 ) , C ( 1 , 1 , 0 ) ,求四面体 N A 1 B 1 C 1 N A_{1} B_{1} C_{1} N A 1 B 1 C 1 的体积. ▶ .\blacktriangleright . ▶
◀ \blacktriangleleft ◀
( 1 ) (1) ( 1 ) 由直线的两点式方程,直接可得过 N , A N, A N , A 两点的直线方程为 x a 1 = y a 2 = z − 1 − 1 \frac{x}{a_{1}}=\frac{y}{a_{2}}=\frac{z-1}{-1} a 1 x = a 2 y = − 1 z − 1 .
( 2 ) (2) ( 2 ) 直线 N A N A N A 的参数方程为 x = a 1 t , y = a 2 t , z = 1 − t x=a_{1} t, y=a_{2} t, z=1-t x = a 1 t , y = a 2 t , z = 1 − t , 将其代入球面方程,得
( a 1 t ) 2 + ( a 2 t ) 2 + ( 1 − t ) 2 = 1 \left(a_{1} t\right)^{2}+\left(a_{2} t\right)^{2}+(1-t)^{2}=1
( a 1 t ) 2 + ( a 2 t ) 2 + ( 1 − t ) 2 = 1
解得参数值为 t = 2 a 1 2 + a 2 2 + 1 t=\frac{2}{a_{1}^{2}+a_{2}^{2}+1} t = a 1 2 + a 2 2 + 1 2 或 t = 0 t=0 t = 0 . 从容可得 A 1 A_{1} A 1 的坐标为 A 1 ( 2 a 1 a 1 2 + a 2 2 + 1 , 2 a 2 a 1 2 + a 2 2 + 1 , a 1 2 + a 2 2 − 1 a 1 2 + a 2 2 + 1 ) A_{1}\left(\frac{2 a_{1}}{a_{1}^{2}+a_{2}^{2}+1}, \frac{2 a_{2}}{a_{1}^{2}+a_{2}^{2}+1}, \frac{a_{1}^{2}+a_{2}^{2}-1}{a_{1}^{2}+a_{2}^{2}+1}\right) A 1 ( a 1 2 + a 2 2 + 1 2 a 1 , a 1 2 + a 2 2 + 1 2 a 2 , a 1 2 + a 2 2 + 1 a 1 2 + a 2 2 − 1 ) . 同理不难得到 B 1 , C 1 B_{1}, C_{1} B 1 , C 1 的坐标。
( 3 ) (3) ( 3 ) 由( 2 ) (2) ( 2 ) 和已知坐标,代入可得 A 1 , B 1 , C 1 A_{1}, B_{1}, C_{1} A 1 , B 1 , C 1 的坐标为 A 1 = ( 2 3 , − 2 3 , 1 3 ) , B 1 = ( − 2 3 , 2 3 , 1 3 ) , C 1 = ( 2 3 , 2 3 , 1 3 ) A_{1}=\left(\frac{2}{3},-\frac{2}{3}, \frac{1}{3}\right), B_{1}=\left(-\frac{2}{3}, \frac{2}{3}, \frac{1}{3}\right), C_{1}=\left(\frac{2}{3}, \frac{2}{3}, \frac{1}{3}\right) A 1 = ( 3 2 , − 3 2 , 3 1 ) , B 1 = ( − 3 2 , 3 2 , 3 1 ) , C 1 = ( 3 2 , 3 2 , 3 1 ) 所以,由向量混合积的几何意义,可得四面体体积为
V = 1 6 ∣ ( N A 1 → , N B 1 → , N C 1 → ) ∣ = 1 6 ∥ 2 3 − 2 3 2 3 − 2 3 2 3 2 3 − 2 3 − 2 3 − 2 3 ∥ = 1 6 ⋅ 32 27 = 16 81 \begin{aligned}
V &=\frac{1}{6}\left|\left(\overrightarrow{N A_{1}}, \overrightarrow{N B_{1}}, \overrightarrow{N C_{1}}\right)\right| \\
&=\frac{1}{6}\left\|\begin{array}{rrr}
\frac{2}{3} & -\frac{2}{3} & \frac{2}{3} \\
-\frac{2}{3} & \frac{2}{3} & \frac{2}{3} \\
-\frac{2}{3} & -\frac{2}{3} & -\frac{2}{3}
\end{array}\right\|=\frac{1}{6} \cdot \frac{32}{27}=\frac{16}{81}
\end{aligned}
V = 6 1 ∣ ∣ ∣ ∣ ( N A 1 , N B 1 , N C 1 ) ∣ ∣ ∣ ∣ = 6 1 ∥ ∥ ∥ ∥ ∥ ∥ ∥ 3 2 − 3 2 − 3 2 − 3 2 3 2 − 3 2 3 2 3 2 − 3 2 ∥ ∥ ∥ ∥ ∥ ∥ ∥ = 6 1 ⋅ 2 7 3 2 = 8 1 1 6
■ \blacksquare ■
2022.9.10
请从以下题目中任选一题作答
【题1 1 1 】
分别在复数域 C \mathbf{C} C 和实数域 R \mathbf{R} R 上写出 x n − 1 x^{n}-1 x n − 1 的因式分解表达式. ▶ .\blacktriangleright . ▶
【题2 2 2 】
设 Γ \Gamma Γ 为形如下列形式的 2016 2016 2 0 1 6 阶矩阵全体:每行每列只有一个非零元素, 且该非零元素为 1 1 1 , 试求解 ∑ A ∈ Γ ∣ A ∣ . ▶ \sum_{A \in \Gamma}|A|.\blacktriangleright ∑ A ∈ Γ ∣ A ∣ . ▶
◀ \blacktriangleleft ◀
【题1 1 1 】
记 ε k = cos 2 k π n + i sin 2 k π n ( k = 0 , 1 , ⋯ , n − 1 ) \varepsilon_{k}=\cos \frac{2 k \pi}{n}+i \sin \frac{2 k \pi}{n}(k=0,1, \cdots, n-1) ε k = cos n 2 k π + i sin n 2 k π ( k = 0 , 1 , ⋯ , n − 1 ) . 因为 x n − 1 x^{n}-1 x n − 1 在复数域 C \mathbf{C} C 中恰 有 n n n 个根 ε k ( k = 0 , 1 , ⋯ , n − 1 ) \varepsilon_{k}(k=0,1, \cdots, n-1) ε k ( k = 0 , 1 , ⋯ , n − 1 ) , 所以多项式 x n − 1 x^{n}-1 x n − 1 在复数域 C \mathbf{C} C 上的因式分解为
x n − 1 = ( x − 1 ) ( x − ε 1 ) ( x − ε 2 ) ⋯ ( x − ε n − 1 ) = ∏ k = 0 n − 1 [ x − ( cos 2 k π n + i sin 2 k π n ) ] x^{n}-1=(x-1)\left(x-\varepsilon_{1}\right)\left(x-\varepsilon_{2}\right) \cdots\left(x-\varepsilon_{n-1}\right)=\prod_{k=0}^{n-1}\left[x-\left(\cos \frac{2 k \pi}{n}+i \sin \frac{2 k \pi}{n}\right)\right]
x n − 1 = ( x − 1 ) ( x − ε 1 ) ( x − ε 2 ) ⋯ ( x − ε n − 1 ) = k = 0 ∏ n − 1 [ x − ( cos n 2 k π + i sin n 2 k π ) ]
下面讨论多项式 x n − 1 x^{n}-1 x n − 1 在实数域 R \mathbf{R} R 上的因式分解. 注意到 ε k \varepsilon_{k} ε k 的共轭复数 ε k ‾ = cos 2 k π n − i sin 2 k π n = cos 2 ( n − k ) π n + i sin 2 ( n − k ) π n = ε n − k \overline{\varepsilon_{k}}=\cos \frac{2 k \pi}{n}-i \sin \frac{2 k \pi}{n}=\cos \frac{2(n-k) \pi}{n}+i \sin \frac{2(n-k) \pi}{n}=\varepsilon_{n-k} ε k = cos n 2 k π − i sin n 2 k π = cos n 2 ( n − k ) π + i sin n 2 ( n − k ) π = ε n − k ,
所以 ε k + ε n − k = ε k + ε k ‾ = 2 cos 2 k π n \varepsilon_{k}+\varepsilon_{n-k}=\varepsilon_{k}+\overline{\varepsilon_{k}}=2 \cos \frac{2 k \pi}{n} ε k + ε n − k = ε k + ε k = 2 cos n 2 k π 为实数, 且由于
( ε k + ε n − k ) 2 − 4 = 4 cos 2 2 k π n − 4 < 0 ( k = 1 , ⋯ , n − 1 ) , \left(\varepsilon_{k}+\varepsilon_{n-k}\right)^{2}-4=4 \cos ^{2} \frac{2 k \pi}{n}-4<0 \quad(k=1, \cdots, n-1),
( ε k + ε n − k ) 2 − 4 = 4 cos 2 n 2 k π − 4 < 0 ( k = 1 , ⋯ , n − 1 ) ,
故 x 2 − ( ε k + ε n − k ) x + 1 x^{2}-\left(\varepsilon_{k}+\varepsilon_{n-k}\right) x+1 x 2 − ( ε k + ε n − k ) x + 1 是实数域 R \mathbf{R} R 上的不可约多项式.
从而当 n n n 为奇数时, 有
x n − 1 = ( x − 1 ) [ x 2 − ( ε 1 + ε n − 1 ) x + 1 ] [ x 2 − ( ε 2 + ε n − 2 ) x + 1 ] ⋯ [ x 2 − ( ε n − 1 2 + ε n + 1 2 ) x + 1 ] = ( x − 1 ) [ x 2 − 2 x cos 2 π n + 1 ] [ x 2 − 2 x cos 4 π n + 1 ] ⋯ [ x 2 − 2 x cos ( n − 1 ) π n + 1 ] = ( x − 1 ) ∏ k = 1 n − 1 2 ( x 2 − 2 x cos 2 k π n + 1 ) x^{n}-1=(x-1)\left[x^{2}-\left(\varepsilon_{1}+\varepsilon_{n-1}\right) x+1\right]\left[x^{2}-\left(\varepsilon_{2}+\varepsilon_{n-2}\right) x+1\right] \cdots\left[x^{2}-\left(\varepsilon_{\frac{n-1}{2}}+\varepsilon_{\frac{n+1}{2}}\right) x+1\right]
=(x-1)\left[x^{2}-2 x \cos \frac{2 \pi}{n}+1\right]\left[x^{2}-2 x \cos \frac{4 \pi}{n}+1\right] \cdots\left[x^{2}-2 x \cos \frac{(n-1) \pi}{n}+1\right]
=(x-1) \prod_{k=1}^{\frac{n-1}{2}}\left(x^{2}-2 x \cos \frac{2 k \pi}{n}+1\right)
x n − 1 = ( x − 1 ) [ x 2 − ( ε 1 + ε n − 1 ) x + 1 ] [ x 2 − ( ε 2 + ε n − 2 ) x + 1 ] ⋯ [ x 2 − ( ε 2 n − 1 + ε 2 n + 1 ) x + 1 ] = ( x − 1 ) [ x 2 − 2 x cos n 2 π + 1 ] [ x 2 − 2 x cos n 4 π + 1 ] ⋯ [ x 2 − 2 x cos n ( n − 1 ) π + 1 ] = ( x − 1 ) k = 1 ∏ 2 n − 1 ( x 2 − 2 x cos n 2 k π + 1 )
当 n n n 为偶数时, 则为
x n − 1 = ( x − 1 ) ( x + 1 ) [ x 2 − ( ε 1 + ε n − 1 ) x + 1 ] [ x 2 − ( ε 2 + ε n − 2 ) x + 1 ] ⋯ [ x 2 − ( ε n − 2 2 + ε n + 2 2 2 ) x + 1 ] = ( x − 1 ) ( x + 1 ) [ x 2 − 2 x cos 2 π n + 1 ] [ x 2 − 2 x cos 4 π n + 1 ] ⋯ [ x 2 − 2 x cos ( n − 2 ) π n + 1 ] = ( x − 1 ) ( x + 1 ) ∏ k = 1 n − 2 2 ( x 2 − 2 x cos 2 k π n + 1 ) . \begin{aligned}
x^{n}-1=&(x-1)(x+1)\left[x^{2}-\left(\varepsilon_{1}+\varepsilon_{n-1}\right) x+1\right]\left[x^{2}-\left(\varepsilon_{2}+\varepsilon_{n-2}\right) x+1\right] \\
& \cdots\left[x^{2}-\left(\varepsilon_{\frac{n-2}{2}}+\varepsilon_{\frac{n+2}{2}}^{2}\right) x+1\right] \\
=&(x-1)(x+1)\left[x^{2}-2 x \cos \frac{2 \pi}{n}+1\right]\left[x^{2}-2 x \cos \frac{4 \pi}{n}+1\right] \\
& \cdots\left[x^{2}-2 x \cos \frac{(n-2) \pi}{n}+1\right]=(x-1)(x+1) \prod_{k=1}^{\frac{n-2}{2}}\left(x^{2}-2 x \cos \frac{2 k \pi}{n}+1\right) .
\end{aligned}
x n − 1 = = ( x − 1 ) ( x + 1 ) [ x 2 − ( ε 1 + ε n − 1 ) x + 1 ] [ x 2 − ( ε 2 + ε n − 2 ) x + 1 ] ⋯ [ x 2 − ( ε 2 n − 2 + ε 2 n + 2 2 ) x + 1 ] ( x − 1 ) ( x + 1 ) [ x 2 − 2 x cos n 2 π + 1 ] [ x 2 − 2 x cos n 4 π + 1 ] ⋯ [ x 2 − 2 x cos n ( n − 2 ) π + 1 ] = ( x − 1 ) ( x + 1 ) k = 1 ∏ 2 n − 2 ( x 2 − 2 x cos n 2 k π + 1 ) .
■ \blacksquare ■
◀ \blacktriangleleft ◀
【题2 2 2 】
由行列式定义可知, ∣ A ∣ = ∑ j 1 ⋯ j n ( − 1 ) τ ( j 1 ⋯ j n ) a 1 j 1 ⋯ a n j j n = ( − 1 ) τ ( k 1 ⋯ k n ) |A|=\sum_{j_{1} \cdots j_{n}}(-1)^{\tau\left(j_{1} \cdots j_{n}\right)} a_{1 j_{1}} \cdots a_{n j j_{n}}=(-1)^{\tau\left(k_{1} \cdots k_{n}\right)} ∣ A ∣ = ∑ j 1 ⋯ j n ( − 1 ) τ ( j 1 ⋯ j n ) a 1 j 1 ⋯ a n j j n = ( − 1 ) τ ( k 1 ⋯ k n ) , 其中 a 1 k 1 = ⋯ = a n k n = 1 ≠ 0 a_{1 k_{1}}=\cdots=a_{n k_{n}}=1 \neq 0 a 1 k 1 = ⋯ = a n k n = 1 = 0 . 当 A A A 取遍 Γ \Gamma Γ 中所有矩阵时, k 1 ⋯ k n k_{1} \cdots k_{n} k 1 ⋯ k n 就取遍了所有 n n n 级排列, 其中奇、偶排列各占一半, 所以 ∑ A ∈ Γ ∣ A ∣ = 0. ■ \sum_{A \in \Gamma}|A|=0.\blacksquare ∑ A ∈ Γ ∣ A ∣ = 0 . ■
2022.9.9
请从以下题目中任选一题作答
【题1 1 1 】
求 ∫ 0 1 ln x ⋅ ln ( 1 − x ) d x . ▶ \int_{0}^{1} \ln x \cdot \ln (1-x) d x.\blacktriangleright ∫ 0 1 ln x ⋅ ln ( 1 − x ) d x . ▶
【题2 2 2 】
设有行列式
D n = ∣ 1 − 1 − 1 ⋯ − 1 − 1 1 1 − 1 ⋯ − 1 − 1 ⋮ ⋮ ⋮ ⋮ ⋮ 1 1 1 ⋯ 1 − 1 1 1 1 ⋯ 1 1 ∣ D_{n}=\left|\begin{array}{cccccc}
1 & -1 & -1 & \cdots & -1 & -1 \\
1 & 1 & -1 & \cdots & -1 & -1 \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
1 & 1 & 1 & \cdots & 1 & -1 \\
1 & 1 & 1 & \cdots & 1 & 1
\end{array}\right| D n = ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ 1 1 ⋮ 1 1 − 1 1 ⋮ 1 1 − 1 − 1 ⋮ 1 1 ⋯ ⋯ ⋯ ⋯ − 1 − 1 ⋮ 1 1 − 1 − 1 ⋮ − 1 1 ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
求其展开式的正项总数. ▶ .\blacktriangleright . ▶
◀ \blacktriangleleft ◀
【题1 1 1 】
∫ 0 1 ln x ⋅ ln ( 1 − x ) d x = − ∫ 0 1 ( ln x ∑ n = 1 ∞ x n n ) d x = ∑ n = 1 ∞ x n + 1 n ( n + 1 ) ln x ∣ 0 1 + ∑ n = 1 ∞ x n + 1 n ( n + 1 ) 2 ∣ 0 1 = ∑ n = 1 ∞ 1 n ( n + 1 ) 2 = ∑ n = 1 ∞ 1 n ( n + 1 ) − ∑ n = 1 ∞ 1 ( n + 1 ) 2 = 1 − ( π 2 6 − 1 ) = 2 − π 2 6 . . \begin{aligned}
\int_{0}^{1} \ln x \cdot \ln (1-x) \mathrm{d} x &=-\int_{0}^{1}\left(\ln x \sum_{n=1}^{\infty} \frac{x^{n}}{n}\right) \mathrm{d} x \\
&=\left.\sum_{n=1}^{\infty} \frac{x^{n+1}}{n(n+1)} \ln x\right|_{0} ^{1}+\left.\sum_{n=1}^{\infty} \frac{x^{n+1}}{n(n+1)^{2}}\right|_{0} ^{1}=\sum_{n=1}^{\infty} \frac{1}{n(n+1)^{2}} \\
&=\sum_{n=1}^{\infty} \frac{1}{n(n+1)}-\sum_{n=1}^{\infty} \frac{1}{(n+1)^{2}}=1-\left(\frac{\pi^{2}}{6}-1\right)=2-\frac{\pi^{2}}{6} .
\end{aligned}. ∫ 0 1 ln x ⋅ ln ( 1 − x ) d x = − ∫ 0 1 ( ln x n = 1 ∑ ∞ n x n ) d x = n = 1 ∑ ∞ n ( n + 1 ) x n + 1 ln x ∣ ∣ ∣ ∣ ∣ ∣ 0 1 + n = 1 ∑ ∞ n ( n + 1 ) 2 x n + 1 ∣ ∣ ∣ ∣ ∣ ∣ 0 1 = n = 1 ∑ ∞ n ( n + 1 ) 2 1 = n = 1 ∑ ∞ n ( n + 1 ) 1 − n = 1 ∑ ∞ ( n + 1 ) 2 1 = 1 − ( 6 π 2 − 1 ) = 2 − 6 π 2 . .
■ \blacksquare ■
◀ \blacktriangleleft ◀
【题2 2 2 】
首先, 将第 n n n 行分别加到其余各行, 可得
D n = ∣ 2 0 0 ⋯ 0 0 2 2 0 ⋯ 0 0 ⋮ ⋮ ⋮ ⋮ ⋮ 2 2 2 ⋯ 2 0 1 1 1 ⋯ 1 1 ∣ = 2 n − 1 D_{n}=\left|\begin{array}{cccccc}
2 & 0 & 0 & \cdots & 0 & 0 \\
2 & 2 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
2 & 2 & 2 & \cdots & 2 & 0 \\
1 & 1 & 1 & \cdots & 1 & 1
\end{array}\right|=2^{n-1} D n = ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ 2 2 ⋮ 2 1 0 2 ⋮ 2 1 0 0 ⋮ 2 1 ⋯ ⋯ ⋯ ⋯ 0 0 ⋮ 2 1 0 0 ⋮ 0 1 ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ = 2 n − 1
其次, D n D_{n} D n 的展开式共有 n ! n ! n ! 项,其中每项为 1 1 1 或者 − 1 -1 − 1 .
设正项的个数为 x x x , 负项的个数为 y y y , 则有 { x + y = n ! , x − y = D n = 2 n − 1 , \left\{\begin{array}{l}x+y=n !, \\ x-y=D_{n}=2^{n-1},\end{array}\right. { x + y = n ! , x − y = D n = 2 n − 1 , 解得 x = D n + n ! 2 = 2 n − 1 + n ! 2 . ■ x=\frac{D_{n}+n !}{2}=\frac{2^{n-1}+n !}{2}.\blacksquare x = 2 D n + n ! = 2 2 n − 1 + n ! . ■
2022.9.8
请从以下题目中任选一题作答
【题1 1 1 】
设 f n ( x ) f_{n}(x) f n ( x ) 在 [ a , b ] [\mathbf{a}, \mathbf{b}] [ a , b ] 上连续, n = 1 , 2 , ⋯ n=1,2, \cdots n = 1 , 2 , ⋯ , 且对每个 x ∈ [ a , b ] , { f n ( x ) } x \in[\mathbf{a}, \mathbf{b}],\left\{f_{n}(x)\right\} x ∈ [ a , b ] , { f n ( x ) } 有界, 则 [ a , b ] [\mathbf{a}, \mathbf{b}] [ a , b ] 中必存在一个小区间使 { f n ( x ) } \left\{f_{n}(x)\right\} { f n ( x ) } 在其上一致有界。▶ \blacktriangleright ▶
【题2 2 2 】
设集合 S = { x ∣ x ∈ Q , x 2 < 3 } \mathbf{S}=\left\{x \mid x \in \mathbb{Q}, x^{2}<3\right\} S = { x ∣ x ∈ Q , x 2 < 3 } 。证明:
( 1 ) (1) ( 1 ) 集合 S S S 没有最大数和最小数;
( 2 ) (2) ( 2 ) 集合 S S S 在 Q \mathbb{Q} Q 内没有上确界与下确界。▶ \blacktriangleright ▶
◀ \blacktriangleleft ◀
【题1 1 1 】
反证法。 假设区间 [ a , b ] [\mathrm{a}, \mathrm{b}] [ a , b ] 中不存在小区间使 { f n ( x ) } \left\{f_{n}(x)\right\} { f n ( x ) } 在其上一致有界, 记 区间 [ a , b ] [\mathrm{a}, \mathrm{b}] [ a , b ] 为 [ a 0 , b 0 ] \left[a_{0}, b_{0}\right] [ a 0 , b 0 ] 。则 ∀ M > 0 \forall M>0 ∀ M > 0 , 存在自然数 n n n 及 x ∈ [ a , b ] x \in[a, b] x ∈ [ a , b ] , 使 ∣ f n ( x ) ∣ > M \left|f_{n}(x)\right|>M ∣ f n ( x ) ∣ > M 。
现在取 M = 1 M=1 M = 1 , 则存自然数 n 1 n_{1} n 1 及 x 1 ∈ [ a , b ] x_{1} \in[a, b] x 1 ∈ [ a , b ] , 使 ∣ f n 1 ( x 1 ) ∣ > 1 \left|f_{n_{1}}\left(x_{1}\right)\right|>1 ∣ f n 1 ( x 1 ) ∣ > 1 。由于 f n 1 ( x ) f_{n_{1}}(x) f n 1 ( x ) 在区间 [ a 0 , b 0 ] \left[a_{0}, b_{0}\right] [ a 0 , b 0 ] 连续, 存在 [ a 1 , b 1 ] ⊂ [ a 0 , b 0 ] \left[a_{1}, b_{1}\right] \subset\left[a_{0}, b_{0}\right] [ a 1 , b 1 ] ⊂ [ a 0 , b 0 ] , 使得 ∀ x ∈ [ a 1 , b 1 ] \forall x \in\left[a_{1}, b_{1}\right] ∀ x ∈ [ a 1 , b 1 ] , 有 ∣ f n 1 ( x ) ∣ > 1 \left|f_{n_{1}}(x)\right|>1 ∣ f n 1 ( x ) ∣ > 1 。
现在取 M = 2 M=2 M = 2 , 则存自然数 n 2 > n 1 n_{2}>n_{1} n 2 > n 1 及 x 2 ∈ [ a 1 , b 1 ] x_{2} \in\left[a_{1}, b_{1}\right] x 2 ∈ [ a 1 , b 1 ] , 使 ∣ f n 2 ( x 2 ) ∣ > 2 \left|f_{n_{2}}\left(x_{2}\right)\right|>2 ∣ f n 2 ( x 2 ) ∣ > 2 。由于 f n 2 ( x ) f_{n_{2}}(x) f n 2 ( x ) 在区间 [ a 1 , b 1 ] \left[a_{1}, b_{1}\right] [ a 1 , b 1 ] 连续, 存在 [ a 2 , b 2 ] ⊂ [ a 1 , b 1 ] \left[a_{2}, b_{2}\right] \subset\left[a_{1}, b_{1}\right] [ a 2 , b 2 ] ⊂ [ a 1 , b 1 ] , 使得 ∀ x ∈ [ a 2 , b 2 ] \forall x \in\left[a_{2}, b_{2}\right] ∀ x ∈ [ a 2 , b 2 ] , 有 ∣ f n 2 ( x ) ∣ > 2 , … \left|f_{n_{2}}(x)\right|>2, \ldots ∣ f n 2 ( x ) ∣ > 2 , … , 这样可得到区间序列 { [ a k , b k ] } \left\{\left[a_{k}, b_{k}\right]\right\} { [ a k , b k ] } 以及自然数序列 { n k } \left\{n_{k}\right\} { n k } , 使得:
( 1 ) [ a k , b k ] ⊂ [ a k − 1 , b k − 1 ] , k = 1 , 2 , ⋯ (1) \left[a_{k}, b_{k}\right] \subset\left[a_{k-1}, b_{k-1}\right], \quad k=1,2, \cdots
( 1 ) [ a k , b k ] ⊂ [ a k − 1 , b k − 1 ] , k = 1 , 2 , ⋯
( 2 ) ∀ x ∈ [ a k , b k ] , ∣ f n k ( x ) ∣ > k . (2) \forall x \in\left[a_{k}, b_{k}\right],\left|f_{n_{k}}(x)\right|>k.
( 2 ) ∀ x ∈ [ a k , b k ] , ∣ f n k ( x ) ∣ > k .
所以存在 x 0 ∈ ⋂ k = 0 ∞ [ a k , b k ] ⊂ [ a , b ] x_{0} \in \bigcap_{k=0}^{\infty}\left[a_{k}, b_{k}\right] \subset[a, b] x 0 ∈ ⋂ k = 0 ∞ [ a k , b k ] ⊂ [ a , b ] , 使得 ∀ k ∈ N , ∣ f n k ( x 0 ) ∣ > k \forall k \in N,\left|f_{n_{k}}\left(x_{0}\right)\right|>k ∀ k ∈ N , ∣ f n k ( x 0 ) ∣ > k , 这和条件: 对每个 x ∈ [ a b b ] , { f n ( x ) } x \in[\mathrm{a} b \mathrm{~b}],\left\{f_{n}(x)\right\} x ∈ [ a b b ] , { f n ( x ) } 有界矛盾。所以, 区间 [ a , b ] [\mathrm{a}, \mathrm{b}] [ a , b ] 中存在小区间使 { f n ( x ) } \left\{f_{n}(x)\right\} { f n ( x ) } 在其上一 致有界。 ■ \blacksquare ■
◀ \blacktriangleleft ◀
【题2 2 2 】
( 1 ) (1) ( 1 ) 反证: 假设 y ∈ S y \in S y ∈ S 为最大数, 则 y 2 < 3 y^{2}<3 y 2 < 3 。显然, − 2 < y < 2 -2<y<2 − 2 < y < 2 。
由于 lim n → ∞ ( 4 n + 1 n 2 ) = 0 \displaystyle\lim _{n \rightarrow \infty}\left(\frac{4}{n}+\frac{1}{n^{2}}\right)=0 n → ∞ lim ( n 4 + n 2 1 ) = 0 。所以当 n n n 充分大时, 4 n + 1 n 2 < 3 − y 2 \frac{4}{n}+\frac{1}{n^{2}}<3-y^{2} n 4 + n 2 1 < 3 − y 2 。
于是 ( y + 1 n ) 2 = y 2 + 2 n y + 1 n 2 < y 2 + 4 n + 1 n 2 < y 2 + 3 − y 2 = 3 \left(y+\frac{1}{n}\right)^{2}=y^{2}+\frac{2}{n} y+\frac{1}{n^{2}}<y^{2}+\frac{4}{n}+\frac{1}{n^{2}}<y^{2}+3-y^{2}=3 ( y + n 1 ) 2 = y 2 + n 2 y + n 2 1 < y 2 + n 4 + n 2 1 < y 2 + 3 − y 2 = 3 ,
而且 y ∈ Q , 1 n ∈ Q y \in Q, \frac{1}{n} \in Q y ∈ Q , n 1 ∈ Q , 故 y + 1 n ∈ Q y+\frac{1}{n} \in Q y + n 1 ∈ Q 。所以由上面的不等式可知: y + 1 n ∈ S y+\frac{1}{n} \in S y + n 1 ∈ S 。
这与 y ∈ S y \in S y ∈ S 为最大数矛盾。所以 S S S 中没有最大数。同理, S S S 中没有最小数。
( 2 ) (2) ( 2 ) 反证: 假设 S S S 在 Q Q Q 中有上确界, 设为 y y y , 则 y ∈ Q y \in Q y ∈ Q 。由上确界的定义可知: y 2 ≤ 3 。 y^{2} \leq 3 。 \quad y 2 ≤ 3 。
由 ( 1 ) (1) ( 1 ) 的证明可知: y 2 < 3 y^{2}<3 y 2 < 3 不成立。因此, y 2 = 3 y^{2}=3 y 2 = 3 。由于 y ∈ Q y \in Q y ∈ Q , 因此,
y = n m y=\frac{n}{m} y = m n , 其中 m , n m, n m , n 为互质的整数。于是, n 2 m 2 = 3 \frac{n^{2}}{m^{2}}=3 m 2 n 2 = 3 。 n 2 = 3 m 2 n^{2}=3 m^{2} n 2 = 3 m 2 。
可知, n n n 为 3 3 3 的倍数, 设 n = 3 k , k ∈ Z n=3 k, k \in Z n = 3 k , k ∈ Z 。于是 9 k 2 = 3 m 2 9 k^{2}=3 m^{2} 9 k 2 = 3 m 2 。 m 2 = 3 k 2 m^{2}=3 k^{2} m 2 = 3 k 2 。可知, m m m 也为 3 3 3 的倍数。
这与 m , n m, n m , n 为互质的整数矛盾。故 y 2 ≤ 3 y^{2} \leq 3 y 2 ≤ 3 不成立, 即 S S S 在 Q Q Q 中没有上确界。同理, S S S 在 Q Q Q 中没有下确界。■ \blacksquare ■
2022.9.7
请从以下题目中任选一题作答
【题1 1 1 】
设 A , B A, B A , B 均为 n n n 阶方阵, 证明:
∣ A B B A ∣ = ∣ A + B ∣ ⋅ ∣ A − B ∣ . ▶ \left|\begin{array}{ll}
A & B \\
B & A
\end{array}\right|=|A+B| \cdot|A-B|.\blacktriangleright ∣ ∣ ∣ ∣ ∣ A B B A ∣ ∣ ∣ ∣ ∣ = ∣ A + B ∣ ⋅ ∣ A − B ∣ . ▶
【题2 2 2 】
求出过原点且和椭球面 4 x 2 + 5 y 2 + 6 z 2 = 1 4 x^{2}+5 y^{2}+6 z^{2}=1 4 x 2 + 5 y 2 + 6 z 2 = 1 的交线为一个圆周的所有平面. ▶ .\blacktriangleright . ▶
◀ \blacktriangleleft ◀
【题1 1 1 】
因为 ( E E O E ) ( A B B A ) ( E − E O E ) = ( A + B O B A − B ) \left(\begin{array}{ll}E & E \\ O & E\end{array}\right)\left(\begin{array}{cc}A & B \\ B & A\end{array}\right)\left(\begin{array}{cc}E & -E \\ O & E\end{array}\right)=\left(\begin{array}{cc}A+B & O \\ B & A-B\end{array}\right) ( E O E E ) ( A B B A ) ( E O − E E ) = ( A + B B O A − B ) ,
所以
∣ A B B A ∣ = ∣ E E O E ∣ ∣ A B B A ∣ ∣ E − E O E ∣ = ∣ A + B O B A − B ∣ = ∣ A + B ∣ ⋅ ∣ A − B ∣ . ■ \left|\begin{array}{cc}
A & B \\
B & A
\end{array}\right|=\left|\begin{array}{cc}
E & E \\
O & E
\end{array}\right|\left|\begin{array}{cc}
A & B \\
B & A
\end{array}\right|\left|\begin{array}{cc}
E & -E \\
O & E
\end{array}\right|=\left|\begin{array}{cc}
A+B & O \\
B & A-B
\end{array}\right|=|A+B| \cdot|A-B|.\blacksquare ∣ ∣ ∣ ∣ ∣ A B B A ∣ ∣ ∣ ∣ ∣ = ∣ ∣ ∣ ∣ ∣ E O E E ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ A B B A ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ E O − E E ∣ ∣ ∣ ∣ ∣ = ∣ ∣ ∣ ∣ ∣ A + B B O A − B ∣ ∣ ∣ ∣ ∣ = ∣ A + B ∣ ⋅ ∣ A − B ∣ . ■
◀ \blacktriangleleft ◀
【题2 2 2 】
由题意可知, 所述圆周是由以原点为球心的球面
x 2 + y 2 + z 2 = R 2 x^{2}+y^{2}+z^{2}=R^{2}
x 2 + y 2 + z 2 = R 2
和椭球面
4 x 2 + 5 y 2 + 6 z 2 = 1 4 x^{2}+5 y^{2}+6 z^{2}=1
4 x 2 + 5 y 2 + 6 z 2 = 1
的交线. 由上面两个方程确定的平面, 即所求的平面, 也必包含上述圆周. 联立此二式, 得
( 4 − 1 R 2 ) x 2 + ( 5 − 1 R 2 ) y 2 + ( 6 − 1 R 2 ) z 2 = 0. \left(4-\frac{1}{R^{2}}\right) x^{2}+\left(5-\frac{1}{R^{2}}\right) y^{2}+\left(6-\frac{1}{R^{2}}\right) z^{2}=0 .
( 4 − R 2 1 ) x 2 + ( 5 − R 2 1 ) y 2 + ( 6 − R 2 1 ) z 2 = 0 .
易见, 当 R 2 = 1 / 5 R^{2}=1/5 R 2 = 1 / 5 时, 有 x 2 − z 2 = 0 x^{2}-z^{2}=0 x 2 − z 2 = 0 , 这是两相交平面 x = z , x + z = 0 x=z, x+z=0 x = z , x + z = 0 , 即为所求平面. ■ .\blacksquare . ■
2022.9.6
请从以下题目中任选一题作答
【题1 1 1 】
下面的说法可以用作 lim x → x 0 f ( x ) = A \displaystyle\lim _{x \rightarrow x_{0}} f(x)=A x → x 0 lim f ( x ) = A 的定义吗? 正确的给以证明, 不正确的举例说明。
“ ∀ ε > 0 , ∃ δ > 0 , ∀ x : 0 < ∣ x − x 0 ∣ < δ , 有 ∣ f ( x ) − A ∣ < ε δ ”。 ▶ \text { “ } \forall \varepsilon>0, \exists \delta>0, \forall x: 0<\left|x-x_{0}\right|<\delta \text {, 有 }|f(x)-A|<\varepsilon \delta \text { ”。 }\blacktriangleright
“ ∀ ε > 0 , ∃ δ > 0 , ∀ x : 0 < ∣ x − x 0 ∣ < δ , 有 ∣ f ( x ) − A ∣ < ε δ ” 。 ▶
【题2 2 2 】
若 f ( x ) f(x) f ( x ) 在 [ a , b ] [a, b] [ a , b ] 上连续, 且 f ( x ) f(x) f ( x ) 在 [ a , b ] [a, b] [ a , b ] 上每点处都取极值, 则 f ( x ) f(x) f ( x ) 恒等于某个常数。▶ \blacktriangleright ▶
◀ \blacktriangleleft ◀
【题1 1 1 】
不能。
考虑f ( x ) = { 1 , x 为有理数 0 , x 为无理数 , ∀ x 0 ∈ R f(x)=\{\begin{array}{ll}1, & x \text { 为有理数 } \\ 0, & x \text { 为无理数 }\end{array}, \forall x_{0} \in R f ( x ) = { 1 , 0 , x 为有理数 x 为无理数 , ∀ x 0 ∈ R , lim x → x 0 f ( x ) \displaystyle\lim _{x \rightarrow x_{0}} f(x) x → x 0 lim f ( x ) . 不存在。
取 A = 0 , ∀ ε > 0 A=0, \forall \varepsilon>0 A = 0 , ∀ ε > 0 , 取 δ = 2 / ε , 0 < ∣ x − x 0 ∣ < δ \delta=2 / \varepsilon, 0<\left|x-x_{0}\right|<\delta δ = 2 / ε , 0 < ∣ x − x 0 ∣ < δ , 有 ∣ f ( x ) − A ∣ = ∣ f ( x ) ∣ < ε δ = 2. ■ |f(x)-A|=|f(x)|<\varepsilon \delta=2.\blacksquare ∣ f ( x ) − A ∣ = ∣ f ( x ) ∣ < ε δ = 2 . ■
◀ \blacktriangleleft ◀
【题2 2 2 】
若不, 有 a 1 , b 1 ∈ [ a , b ] , a 1 ≠ b 1 , f ( a 1 ) ≠ f ( b 1 ) a_{1}, b_{1} \in[a, b], a_{1} \neq b_{1}, f\left(a_{1}\right) \neq f\left(b_{1}\right) a 1 , b 1 ∈ [ a , b ] , a 1 = b 1 , f ( a 1 ) = f ( b 1 ) 。
设 f ( a 1 ) < f ( b 1 ) , a 1 < b 1 , ∃ a 2 , b 2 , a 2 < b 2 f\left(a_{1}\right)<f\left(b_{1}\right), a_{1}<b_{1} , \exists a_{2}, b_{2}, a_{2}<b_{2} f ( a 1 ) < f ( b 1 ) , a 1 < b 1 , ∃ a 2 , b 2 , a 2 < b 2 , 使 f ( a 1 ) < f ( a 2 ) < f ( b 2 ) < f ( b 1 ) , b 2 − a 2 < 1 2 ( b 1 − a 1 ) ∃ a 3 , b 3 , a 3 < b 3 f\left(a_{1}\right)<f\left(a_{2}\right)<f\left(b_{2}\right)<f\left(b_{1}\right), \quad b_{2}-a_{2}<\frac{1}{2}\left(b_{1}-a_{1}\right) \exists a_{3}, b_{3}, a_{3}<b_{3} f ( a 1 ) < f ( a 2 ) < f ( b 2 ) < f ( b 1 ) , b 2 − a 2 < 2 1 ( b 1 − a 1 ) ∃ a 3 , b 3 , a 3 < b 3 , 使 f ( a 2 ) < f ( a 3 ) < f ( b 3 ) < f ( b 2 ) , b 3 − a 3 < 1 2 2 ( b 2 − a 2 ) f\left(a_{2}\right)<f\left(a_{3}\right)<f\left(b_{3}\right)<f\left(b_{2}\right), b_{3}-a_{3}<\frac{1}{2^{2}}\left(b_{2}-a_{2}\right) f ( a 2 ) < f ( a 3 ) < f ( b 3 ) < f ( b 2 ) , b 3 − a 3 < 2 2 1 ( b 2 − a 2 )
( i ) [ a n , b n ] ⊃ [ a n + 1 , b n + 1 ] (i) \left[a_{n}, b_{n}\right] \supset\left[a_{n+1}, b_{n+1}\right] ( i ) [ a n , b n ] ⊃ [ a n + 1 , b n + 1 ] ;
( i i ) b n − a n → 0 (ii) b_{n}-a_{n} \rightarrow 0 ( i i ) b n − a n → 0 ;
( i i i ) f ( a n ) (iii) f\left(a_{n}\right) ( i i i ) f ( a n ) 递增, f ( b n ) f\left(b_{n}\right) f ( b n ) 递增, f ( a n ) < f ( b n ) f\left(a_{n}\right)<f\left(b_{n}\right) f ( a n ) < f ( b n )
由闭区间套定理,
∃ x 0 ∈ [ a n , b n ] , lim a n = lim b n = x 0 ∈ ( a , b ) , f ( a n ) < f ( x 0 ) < f ( b n ) ⇒ x 0 \exists x_{0} \in\left[a_{n}, b_{n}\right], \quad \lim a_{n}=\lim b_{n}=x_{0} \in(a, b), f\left(a_{n}\right)<f\left(x_{0}\right)<f\left(b_{n}\right) \Rightarrow x_{0} ∃ x 0 ∈ [ a n , b n ] , lim a n = lim b n = x 0 ∈ ( a , b ) , f ( a n ) < f ( x 0 ) < f ( b n ) ⇒ x 0 不是 f ( x ) f(x) f ( x ) 的局部极值, 矛盾。■ \blacksquare ■
2022.9.5
请从以下题目中任选一题作答
【题1 1 1 】
证明: ( x 2 + x + 1 ) ∣ ( x 3 m + x 3 n + 1 + x 3 p + 2 ) \left(x^{2}+x+1\right) \mid\left(x^{3 m}+x^{3 n+1}+x^{3 p+2}\right. ) ( x 2 + x + 1 ) ∣ ( x 3 m + x 3 n + 1 + x 3 p + 2 ) (其中 m , n , p m, n, p m , n , p 是三个任意的正整数) . ▶ .\blacktriangleright . ▶
【题2 2 2 】
设 a > 1 a>1 a > 1 , 求无穷级数的和
s = ∑ n = 0 ∞ 2 n a 2 n + 1 . ▶ s=\displaystyle\sum_{n=0}^{\infty} \frac{2^{n}}{a^{2^{n}}+1} .\blacktriangleright s = n = 0 ∑ ∞ a 2 n + 1 2 n . ▶
◀ \blacktriangleleft ◀
【题1 1 1 】
多项式 x 2 + x + 1 x^{2}+x+1 x 2 + x + 1 的根为 ω 1 = − 1 + 3 i 2 , ω 2 = − 1 − 3 i 2 \omega_{1}=\frac{-1+\sqrt{3} \mathrm{i}}{2}, \omega_{2}=\frac{-1-\sqrt{3} \mathrm{i}}{2} ω 1 = 2 − 1 + 3 i , ω 2 = 2 − 1 − 3 i , 即 x 2 + x + 1 = ( x − ω 1 ) ( x − ω 2 ) x^{2}+x+1=\left(x-\omega_{1}\right)\left(x-\omega_{2}\right) x 2 + x + 1 = ( x − ω 1 ) ( x − ω 2 ) .
又
ω i 3 − 1 = ( ω i − 1 ) ( ω i 2 + ω i + 1 ) = 0 ( i = 1 , 2 ) , \omega_{i}^{3}-1=\left(\omega_{i}-1\right)\left(\omega_{i}^{2}+\omega_{i}+1\right)=0 \quad(i=1,2),
ω i 3 − 1 = ( ω i − 1 ) ( ω i 2 + ω i + 1 ) = 0 ( i = 1 , 2 ) ,
可知 ω i 3 = 1 \omega_{i}^{3}=1 ω i 3 = 1 , 从而 ω i 3 m = ω i 3 n = ω i 3 p = 1 \omega_{i}^{3 m}=\omega_{i}^{3 n}=\omega_{i}^{3 p}=1 ω i 3 m = ω i 3 n = ω i 3 p = 1 .
设 f ( x ) = x 3 m + x 3 n + 1 + x 3 p + 2 f(x)=x^{3 m}+x^{3 n+1}+x^{3 p+2} f ( x ) = x 3 m + x 3 n + 1 + x 3 p + 2 , 则有 f ( ω i ) = ω i 3 m + ω i 3 n + 1 + ω i 3 p + 2 = 1 + ω i + ω i 2 = 0 f\left(\omega_{i}\right)=\omega_{i}^{3 m}+\omega_{i}^{3 n+1}+\omega_{i}^{3 p+2}=1+\omega_{i}+\omega_{i}^{2}=0 f ( ω i ) = ω i 3 m + ω i 3 n + 1 + ω i 3 p + 2 = 1 + ω i + ω i 2 = 0 所以可得 ( x − ω i ) ∣ f ( x ) ( i = 1 , 2 ) \left(x-\omega_{i}\right) \mid f(x)(i=1,2) ( x − ω i ) ∣ f ( x ) ( i = 1 , 2 ) . 又因为 x − ω 1 x-\omega_{1} x − ω 1 与 x − ω 2 x-\omega_{2} x − ω 2 互素, 所以 ( x − ω 1 ) ( x − ω 2 ) ∣ f ( x ) \left(x-\omega_{1}\right)\left(x-\omega_{2}\right) \mid f(x) ( x − ω 1 ) ( x − ω 2 ) ∣ f ( x ) ,
即 ( x 2 + x + 1 ) ∣ f ( x ) . ■ \left(x^{2}+x+1\right) \mid f(x).\blacksquare ( x 2 + x + 1 ) ∣ f ( x ) . ■
◀ \blacktriangleleft ◀
【题2 2 2 】
对于 a > 1 a>1 a > 1 , 由于
2 n a 2 n + 1 = 2 n ( a 2 n − 1 ) a 2 n + 1 − 1 = 2 n ( a 2 n + 1 ) − 2 n + 1 a 2 n + 1 − 1 = 2 n a 2 n − 1 − 2 n + 1 a 2 n + 1 − 1 \frac{2^{n}}{a^{2^n}+1}=\frac{2^{n}\left(a^{2^{n}}-1\right)}{a^{2^{n+1}}-1}=\frac{2^{n}\left(a^{2^{n}}+1\right)-2^{n+1}}{a^{2^{n+1}}-1}=\frac{2^{n}}{a^{2^{n}}-1}-\frac{2^{n+1}}{a^{2^{n+1}}-1}
a 2 n + 1 2 n = a 2 n + 1 − 1 2 n ( a 2 n − 1 ) = a 2 n + 1 − 1 2 n ( a 2 n + 1 ) − 2 n + 1 = a 2 n − 1 2 n − a 2 n + 1 − 1 2 n + 1
所以
s = ∑ n = 0 ∞ ( 2 n a 2 n − 1 − 2 n + 1 a 2 n + 1 − 1 ) = 1 a − 1 . ■ s=\displaystyle\sum_{n=0}^{\infty}\left(\frac{2^{n}}{a^{2^{n}}-1}-\frac{2^{n+1}}{a^{2^{n+1}}-1}\right)=\frac{1}{a-1} .\blacksquare
s = n = 0 ∑ ∞ ( a 2 n − 1 2 n − a 2 n + 1 − 1 2 n + 1 ) = a − 1 1 . ■
2022.9.4
请从以下题目中任选一题作答
【题1 1 1 】
设 a n = ∫ 0 π 2 t ∣ sin n t sin t ∣ 3 d t a_{n}=\int_{0}^{\frac{\pi}{2}} t\left|\frac{\sin n t}{\sin t}\right|^{3} \mathrm{~d} t a n = ∫ 0 2 π t ∣ ∣ ∣ s i n t s i n n t ∣ ∣ ∣ 3 d t , 证明 ∑ n = 1 ∞ 1 a n \displaystyle\sum_{n=1}^{\infty} \frac{1}{a_{n}} n = 1 ∑ ∞ a n 1 发散. ▶ .\blacktriangleright . ▶
【题2 2 2 】
证明:
非常数的一元多项式函数不是周期函数. ▶ .\blacktriangleright . ▶
◀ \blacktriangleleft ◀
【题1 1 1 】
∫ 0 π 2 t ∣ sin n t sin t ∣ 3 d t = ∫ 0 π n t ∣ sin n t sin t ∣ 3 d t + ∫ π n π 2 t ∣ sin n t sin t ∣ 3 d t = I 1 + I 2 , \int_{0}^{\frac{\pi}{2}} t\left|\frac{\sin n t}{\sin t}\right|^{3} \mathrm{~d} t=\int_{0}^{\frac{\pi}{n}} t\left|\frac{\sin n t}{\sin t}\right|^{3} \mathrm{~d} t+\int_{\frac{\pi}{n}}^{\frac{\pi}{2}} t\left|\frac{\sin n t}{\sin t}\right|^{3} \mathrm{~d} t=I_{1}+I_{2} ,
∫ 0 2 π t ∣ ∣ ∣ ∣ ∣ sin t sin n t ∣ ∣ ∣ ∣ ∣ 3 d t = ∫ 0 n π t ∣ ∣ ∣ ∣ ∣ sin t sin n t ∣ ∣ ∣ ∣ ∣ 3 d t + ∫ n π 2 π t ∣ ∣ ∣ ∣ ∣ sin t sin n t ∣ ∣ ∣ ∣ ∣ 3 d t = I 1 + I 2 ,
I 1 = ∫ 0 π n t ∣ sin n t sin t ∣ 3 d t < n 3 ∫ 0 π n t d t = π 2 n 2 , I_{1}=\int_{0}^{\frac{\pi}{n}} t\left|\frac{\sin n t}{\sin t}\right|^{3} \mathrm{~d} t<n^{3} \int_{0}^{\frac{\pi}{n}} t \mathrm{~d} t=\frac{\pi^{2} n}{2},
I 1 = ∫ 0 n π t ∣ ∣ ∣ ∣ ∣ sin t sin n t ∣ ∣ ∣ ∣ ∣ 3 d t < n 3 ∫ 0 n π t d t = 2 π 2 n ,
I 2 = ∫ π n π 2 t ∣ sin n t sin t ∣ 3 d t < ∫ π n π 2 t ( π 2 t ) 3 d t = − π 3 8 ∫ π n π 2 d ( 1 t ) = π 3 8 ( n π − 2 π ) < π 2 n 8 I_{2}=\int_{\frac{\pi}{n}}^{\frac{\pi}{2}} t\left|\frac{\sin n t}{\sin t}\right|^{3} \mathrm{~d} t<\int_{\frac{\pi}{n}}^{\frac{\pi}{2}} t\left(\frac{\pi}{2 t}\right)^{3} \mathrm{~d} t=-\frac{\pi^{3}}{8} \int_{\frac{\pi}{n}}^{\frac{\pi}{2}} \mathrm{~d}\left(\frac{1}{t}\right)=\frac{\pi^{3}}{8}\left(\frac{n}{\pi}-\frac{2}{\pi}\right)<\frac{\pi^{2} n}{8}
I 2 = ∫ n π 2 π t ∣ ∣ ∣ ∣ ∣ sin t sin n t ∣ ∣ ∣ ∣ ∣ 3 d t < ∫ n π 2 π t ( 2 t π ) 3 d t = − 8 π 3 ∫ n π 2 π d ( t 1 ) = 8 π 3 ( π n − π 2 ) < 8 π 2 n
因此, 1 a n > 1 π 2 n \frac{1}{a_{n}}>\frac{1}{\pi^{2} n} a n 1 > π 2 n 1 , 由此得到 ∑ n = 1 ∞ 1 a n \displaystyle\sum_{n=1}^{\infty} \frac{1}{a_{n}} n = 1 ∑ ∞ a n 1 发散. ■ .\blacksquare . ■
◀ \blacktriangleleft ◀
【题2 2 2 】
假设 deg ( f ( x ) ) ⩾ 1 \operatorname{deg}(f(x)) \geqslant 1 d e g ( f ( x ) ) ⩾ 1 . 若存在常数 c ≠ 0 c \neq 0 c = 0 , 使得对任意的 x x x , 均有 f ( x + c ) = f ( x ) f(x+c)= f(x) f ( x + c ) = f ( x ) 成立. 设 α \alpha α 是 f ( x ) f(x) f ( x ) 的 1 1 1 个根, 则 α + c , α + 2 c , α + 3 c , ⋯ \alpha+c, \alpha+2 c, \alpha+3 c, \cdots α + c , α + 2 c , α + 3 c , ⋯ 都是 f ( x ) f(x) f ( x ) 的根. 但 f ( x ) f(x) f ( x ) 的根的个数不超过 deg ( f ( x ) ) \operatorname{deg}(f(x)) d e g ( f ( x ) ) , 因此存在不同的正整数 s , t s, t s , t , 使得 α + s c = α + t c \alpha+s c= \alpha+t c α + s c = α + t c , 即 ( s − t ) c = 0 ⇒ c = 0 (s-t) c=0 \Rightarrow c=0 ( s − t ) c = 0 ⇒ c = 0 , 矛盾. 故结论成立. ■ .\blacksquare . ■
2022.9.3
请从以下题目中任选一题作答
【题1 1 1 】
考虑 ∫ 0 1 sin ( x + 1 x ) x α d x \int_{0}^{1} \frac{\sin \left(x+\frac{1}{x}\right)}{x^{\alpha}} \mathrm{d} x ∫ 0 1 x α s i n ( x + x 1 ) d x 与 ∫ 1 + ∞ sin ( x + 1 x ) x α d x \int_{1}^{+\infty} \frac{\sin \left(x+\frac{1}{x}\right)}{x^{\alpha}} \mathrm{d} x ∫ 1 + ∞ x α s i n ( x + x 1 ) d x 的敛散性. ▶ .\blacktriangleright . ▶
【题2 2 2 】
假设 f 1 ( x ) f_{1}(x) f 1 ( x ) 与 f 2 ( x ) f_{2}(x) f 2 ( x ) 为次数不超过 3 3 3 的首项系数为 1 1 1 的互异多项式, 假设 x 4 + x 2 + 1 x^{4}+x^{2}+1 x 4 + x 2 + 1 整除 f 1 ( x 3 ) + x 4 f 2 ( x 3 ) f_{1}\left(x^{3}\right)+x^{4} f_{2}\left(x^{3}\right) f 1 ( x 3 ) + x 4 f 2 ( x 3 ) , 试求 f 1 ( x ) f_{1}(x) f 1 ( x ) 与 f 2 ( x ) f_{2}(x) f 2 ( x ) 的最大公因式. ▶ .\blacktriangleright . ▶
◀ \blacktriangleleft ◀
【题2 2 2 】
由于 x 4 + x 2 + 1 = ( x 2 + 1 ) 2 − x 2 = ( x 2 + x + 1 ) ( x 2 − x + 1 ) x^{4}+x^{2}+1=\left(x^{2}+1\right)^{2}-x^{2}=\left(x^{2}+x+1\right)\left(x^{2}-x+1\right) x 4 + x 2 + 1 = ( x 2 + 1 ) 2 − x 2 = ( x 2 + x + 1 ) ( x 2 − x + 1 ) . 这里假设它的四个根分别为 ω 1 , ω 2 , ε 1 , ε 2 \omega_{1}, \omega_{2}, \varepsilon_{1}, \varepsilon_{2} ω 1 , ω 2 , ε 1 , ε 2 且
ω 1 = − 1 + 3 i 2 , ω 2 = − 1 − 3 i 2 , ε 1 = 1 + 3 i 2 , ε 2 = 1 − 3 i 2 . \omega_{1}=\frac{-1+\sqrt{3} \mathrm{i}}{2}, \quad \omega_{2}=\frac{-1-\sqrt{3} \mathrm{i}}{2}, \quad \varepsilon_{1}=\frac{1+\sqrt{3} \mathrm{i}}{2}, \quad \varepsilon_{2}=\frac{1-\sqrt{3} \mathrm{i}}{2} .
ω 1 = 2 − 1 + 3 i , ω 2 = 2 − 1 − 3 i , ε 1 = 2 1 + 3 i , ε 2 = 2 1 − 3 i .
令 f 1 ( x 3 ) + x 4 f 2 ( x 3 ) = ( x 4 + x 2 + 1 ) g ( x ) f_{1}\left(x^{3}\right)+x^{4} f_{2}\left(x^{3}\right)=\left(x^{4}+x^{2}+1\right) g(x) f 1 ( x 3 ) + x 4 f 2 ( x 3 ) = ( x 4 + x 2 + 1 ) g ( x ) , 于是有方程组
{ f 1 ( 1 ) + ω 1 f 2 ( 1 ) = 0 , f 1 ( 1 ) + ω 2 f 2 ( 1 ) = 0 与 { f 1 ( − 1 ) − ε 1 f 2 ( − 1 ) = 0 , f 1 ( − 1 ) − ε 2 f 2 ( − 1 ) = 0 , \left\{\begin{array} { l }
{ f _ { 1 } ( 1 ) + \omega _ { 1 } f _ { 2 } ( 1 ) = 0 , } \\
{ f _ { 1 } ( 1 ) + \omega _ { 2 } f _ { 2 } ( 1 ) = 0 }
\end{array} \quad \text { 与 } \left\{\begin{array}{l}
f_{1}(-1)-\varepsilon_{1} f_{2}(-1)=0, \\
f_{1}(-1)-\varepsilon_{2} f_{2}(-1)=0,
\end{array}\right.\right. { f 1 ( 1 ) + ω 1 f 2 ( 1 ) = 0 , f 1 ( 1 ) + ω 2 f 2 ( 1 ) = 0 与 { f 1 ( − 1 ) − ε 1 f 2 ( − 1 ) = 0 , f 1 ( − 1 ) − ε 2 f 2 ( − 1 ) = 0 ,
解方程组得
f 1 ( 1 ) = f 2 ( 1 ) = 0 , f 1 ( − 1 ) = f 2 ( − 1 ) = 0 , f_{1}(1)=f_{2}(1)=0, \quad f_{1}(-1)=f_{2}(-1)=0,
f 1 ( 1 ) = f 2 ( 1 ) = 0 , f 1 ( − 1 ) = f 2 ( − 1 ) = 0 ,
于是有 ( x + 1 ) ( x − 1 ) ∣ f 1 ( x ) , ( x + 1 ) ( x − 1 ) ∣ f 2 ( x ) (x+1)(x-1)\left|f_{1}(x),(x+1)(x-1)\right| f_{2}(x) ( x + 1 ) ( x − 1 ) ∣ f 1 ( x ) , ( x + 1 ) ( x − 1 ) ∣ f 2 ( x ) .
而 f 1 ( x ) f_{1}(x) f 1 ( x ) 与 f 2 ( x ) f_{2}(x) f 2 ( x ) 为互异的次数不超过 3 3 3 的首项系数为 1 1 1 的多项式, 所以有
( f 1 ( x ) , f 2 ( x ) ) = x 2 − 1. ■ \left(f_{1}(x), f_{2}(x)\right)=x^{2}-1.\blacksquare
( f 1 ( x ) , f 2 ( x ) ) = x 2 − 1 . ■
2022.9.2
请从以下题目中任选一题作答
【题1 1 1 】
设 f ( x ) f(x) f ( x ) 是二次可微的函数, 满足 f ( 0 ) = 1 , f ′ ( 0 ) = 0 f(0)=1, f^{\prime}(0)=0 f ( 0 ) = 1 , f ′ ( 0 ) = 0 , 且对任意的 x ⩾ 0 x \geqslant 0 x ⩾ 0 有
f ′ ′ ( x ) − 5 f ′ ( x ) + 6 f ( x ) ⩾ 0 f^{\prime \prime}(x)-5 f^{\prime}(x)+6 f(x) \geqslant 0 f ′ ′ ( x ) − 5 f ′ ( x ) + 6 f ( x ) ⩾ 0 .
证明:对每个 x ⩾ 0 x \geqslant 0 x ⩾ 0 , 都有 f ( x ) ⩾ 3 e 2 x − 2 e 3 x . ▶ f(x) \geqslant 3 \mathrm{e}^{2 x}-2 \mathrm{e}^{3 x}.\blacktriangleright f ( x ) ⩾ 3 e 2 x − 2 e 3 x . ▶
【题2 2 2 】
f ( x ) f(x) f ( x ) 在 a a a 点可导, 且 { x n } \left\{x_{n}\right\} { x n } 单调递增趋于 a a a ,{ y n } \left\{y_{n}\right\} { y n } 单调递减趋于 a a a , 证明:
lim n → ∞ f ( y n ) − f ( x n ) y n − x n = f ′ ( a ) . ▶ \displaystyle\lim _{n \rightarrow \infty} \frac{f\left(y_{n}\right)-f\left(x_{n}\right)}{y_{n}-x_{n}}=f^{\prime}(a).\blacktriangleright n → ∞ lim y n − x n f ( y n ) − f ( x n ) = f ′ ( a ) . ▶
◀ \blacktriangleleft ◀
【题1 1 1 】
首先 [ f ′ ′ ( x ) − 2 f ′ ( x ) ] − 3 [ f ′ ( x ) − 2 f ( x ) ] ⩾ 0 \left[f^{\prime \prime}(x)-2 f^{\prime}(x)\right]-3\left[f^{\prime}(x)-2 f(x)\right] \geqslant 0 [ f ′ ′ ( x ) − 2 f ′ ( x ) ] − 3 [ f ′ ( x ) − 2 f ( x ) ] ⩾ 0 , 令 g ( x ) = f ′ ( x ) − 2 f ( x ) g(x)=f^{\prime}(x)-2 f(x) g ( x ) = f ′ ( x ) − 2 f ( x ) , 则 g ′ ( x ) − 3 g ( x ) ⩾ 0 g^{\prime}(x)-3 g(x) \geqslant 0 g ′ ( x ) − 3 g ( x ) ⩾ 0 , 因此 ( g ( x ) e − 3 x ) ′ ⩾ 0 \left(g(x) \mathrm{e}^{-3 x}\right)^{\prime} \geqslant 0 ( g ( x ) e − 3 x ) ′ ⩾ 0 , 所以
g ( x ) e − 3 x ⩾ g ( 0 ) = − 2 , 或者 f ′ ( x ) − 2 f ( x ) ⩾ − 2 e 3 x g(x) \mathrm{e}^{-3 x} \geqslant g(0)=-2 \text {, 或者 } f^{\prime}(x)-2 f(x) \geqslant-2 \mathrm{e}^{3 x} g ( x ) e − 3 x ⩾ g ( 0 ) = − 2 , 或者 f ′ ( x ) − 2 f ( x ) ⩾ − 2 e 3 x
进一步, 有 ( f ( x ) e − 2 x ) ′ ⩾ − 2 e x \left(f(x) \mathrm{e}^{-2 x}\right)^{\prime} \geqslant-2 \mathrm{e}^{x} ( f ( x ) e − 2 x ) ′ ⩾ − 2 e x , 即 ( f ( x ) e − 2 x + 2 e x ) ′ ⩾ 0 \left(f(x) \mathrm{e}^{-2 x}+2 \mathrm{e}^{x}\right)^{\prime} \geqslant 0 ( f ( x ) e − 2 x + 2 e x ) ′ ⩾ 0 , 所以 f ( x ) e − 2 x + 2 e x ⩾ f ( 0 ) + 2 = 3 f(x) \mathrm{e}^{-2 x}+2 \mathrm{e}^{x} \geqslant f(0)+2=3 f ( x ) e − 2 x + 2 e x ⩾ f ( 0 ) + 2 = 3 , 即 f ( x ) ⩾ 3 e 2 x − 2 e 3 x . ■ f(x) \geqslant 3 \mathrm{e}^{2 x}-2 \mathrm{e}^{3 x}.\blacksquare f ( x ) ⩾ 3 e 2 x − 2 e 3 x . ■
◀ \blacktriangleleft ◀
【题2 2 2 】
f ( y n ) − f ( x n ) y n − x n = f ( y n ) − f ( a ) + f ( a ) − f ( x n ) y n − x n = λ n f ( y n ) − f ( a ) y n − a + ( 1 − λ n ) f ( x n ) − f ( a ) x n − a , \begin{aligned}
\frac{f\left(y_{n}\right)-f\left(x_{n}\right)}{y_{n}-x_{n}} &=\frac{f\left(y_{n}\right)-f(a)+f(a)-f\left(x_{n}\right)}{y_{n}-x_{n}} \\
&=\lambda_{n} \frac{f\left(y_{n}\right)-f(a)}{y_{n}-a}+\left(1-\lambda_{n}\right) \frac{f\left(x_{n}\right)-f(a)}{x_{n}-a},
\end{aligned} y n − x n f ( y n ) − f ( x n ) = y n − x n f ( y n ) − f ( a ) + f ( a ) − f ( x n ) = λ n y n − a f ( y n ) − f ( a ) + ( 1 − λ n ) x n − a f ( x n ) − f ( a ) ,
其中 λ n = y n − a y n − x n \lambda_{n}=\frac{y_{n}-a}{y_{n}-x_{n}} λ n = y n − x n y n − a , 易知 ∀ ε > 0 , ∃ N ∈ N + \forall \varepsilon>0, \exists N \in \mathbf{N}_{+} ∀ ε > 0 , ∃ N ∈ N + , 当 n > N n>\mathbf{N} n > N 时,
∣ f ( y n ) − f ( x n ) y n − x n − f ′ ( a ) ∣ ⩽ λ n ∣ f ( y n ) − f ( a ) y n − a − f ′ ( a ) ∣ + ( 1 − λ n ) ∣ f ( x n ) − f ( a ) x n − a − f ′ ( a ) ∣ < λ n ε + ( 1 − λ n ) ε = ε . ■ \begin{aligned}
\left|\frac{f\left(y_{n}\right)-f\left(x_{n}\right)}{y_{n}-x_{n}}-f^{\prime}(a)\right| & \leqslant \lambda_{n}\left|\frac{f\left(y_{n}\right)-f(a)}{y_{n}-a}-f^{\prime}(a)\right|+\left(1-\lambda_{n}\right)\left|\frac{f\left(x_{n}\right)-f(a)}{x_{n}-a}-f^{\prime}(a)\right| \\
&<\lambda_{n} \varepsilon+\left(1-\lambda_{n}\right) \varepsilon=\varepsilon .\blacksquare
\end{aligned} ∣ ∣ ∣ ∣ ∣ y n − x n f ( y n ) − f ( x n ) − f ′ ( a ) ∣ ∣ ∣ ∣ ∣ ⩽ λ n ∣ ∣ ∣ ∣ ∣ y n − a f ( y n ) − f ( a ) − f ′ ( a ) ∣ ∣ ∣ ∣ ∣ + ( 1 − λ n ) ∣ ∣ ∣ ∣ ∣ x n − a f ( x n ) − f ( a ) − f ′ ( a ) ∣ ∣ ∣ ∣ ∣ < λ n ε + ( 1 − λ n ) ε = ε . ■
2022.9.1
请从以下题目中任选一题作答
【题1 1 1 】
设 f ( x ) f(x) f ( x ) 在 [ 1 , + ∞ ) [1,+\infty) [ 1 , + ∞ ) 一致连续, 证明 f ( x ) x \frac{f(x)}{x} x f ( x ) 在 [ 1 , + ∞ ) [1,+\infty) [ 1 , + ∞ ) 有界 . ▶ .\blacktriangleright . ▶
【题2 2 2 】
设 f f f 在 [ 0 , 1 ] [0,1] [ 0 , 1 ] 上有三阶连续导数, f ( 0 ) = 1 , f ( 1 ) = 2 , f ′ ( 1 2 ) = 0 f(0)=1, f(1)=2, f^{\prime}\left(\frac{1}{2}\right)=0 f ( 0 ) = 1 , f ( 1 ) = 2 , f ′ ( 2 1 ) = 0 , 证明: 至少存在一点 ξ ∈ ( 0 , 1 ) \xi \in(0,1) ξ ∈ ( 0 , 1 ) , 使得 ∣ f ′ ′ ′ ( ξ ) ∣ ⩾ 24. ▶ \left|f^{\prime \prime \prime}(\xi)\right| \geqslant 24.\blacktriangleright ∣ f ′ ′ ′ ( ξ ) ∣ ⩾ 2 4 . ▶
◀ \blacktriangleleft ◀
【题1 1 1 】
由于 f ( x ) f(x) f ( x ) 在 [ 1 , + ∞ ) [1,+\infty) [ 1 , + ∞ ) 一致连续, 对于 ε 0 = 1 \varepsilon_{0}=1 ε 0 = 1 , 存在 δ 0 > 0 \delta_{0}>0 δ 0 > 0 任意的 x 1 , x 2 ∈ [ 1 , + ∞ ) , ∣ x 1 − x 2 ∣ ≤ δ 0 x_{1}, x_{2} \in[1,+\infty) , \left|x_{1}-x_{2}\right| \leq \delta_{0} x 1 , x 2 ∈ [ 1 , + ∞ ) , ∣ x 1 − x 2 ∣ ≤ δ 0 , 有 ∣ f ( x 1 ) − f ( x 2 ) ∣ ≤ ε 0 = 1 \left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \leq \varepsilon_{0}=1 ∣ f ( x 1 ) − f ( x 2 ) ∣ ≤ ε 0 = 1
对于任意的 x ∈ [ 1 , + ∞ ) x \in[1,+\infty) x ∈ [ 1 , + ∞ ) , 存在整数 n n n , 使得 n ≤ x − 1 δ 0 < n + 1 n \leq \frac{x-1}{\delta_{0}}<n+1 n ≤ δ 0 x − 1 < n + 1 或 1 + n δ 0 ≤ x < 1 + ( n + 1 ) δ 0 1+n \delta_{0} \leq x<1+(n+1) \delta_{0} 1 + n δ 0 ≤ x < 1 + ( n + 1 ) δ 0 ,
∣ f ( x ) − f ( 1 ) x ∣ ≤ ∣ f ( 1 + δ 0 ) − f ( 1 ) ∣ + ∣ f ( 1 + 2 δ 0 ) − f ( 1 + δ 0 ) ∣ + ⋯ + ∣ f ( 1 + n δ 0 ) − f ( 1 + ( n − 1 ) δ 0 ) ∣ + ∣ f ( x ) − f ( 1 + n δ 0 ) ∣ x \left|\frac{f(x)-f(1)}{x}\right|
\leq \frac{\left|f\left(1+\delta_{0}\right)-f(1)\right|+\left|f\left(1+2 \delta_{0}\right)-f\left(1+\delta_{0}\right)\right|+\cdots+\left|f\left(1+n \delta_{0}\right)-f\left(1+(n-1) \delta_{0}\right)\right|+\left|f(x)-f\left(1+n \delta_{0}\right)\right|}{x} ∣ ∣ ∣ ∣ x f ( x ) − f ( 1 ) ∣ ∣ ∣ ∣ ≤ x ∣ f ( 1 + δ 0 ) − f ( 1 ) ∣ + ∣ f ( 1 + 2 δ 0 ) − f ( 1 + δ 0 ) ∣ + ⋯ + ∣ f ( 1 + n δ 0 ) − f ( 1 + ( n − 1 ) δ 0 ) ∣ + ∣ f ( x ) − f ( 1 + n δ 0 ) ∣
≤ n + 1 x ≤ x − 1 δ 0 + 1 x ≤ 1 δ 0 + 1 ∣ f ( x ) x ∣ ≤ ∣ f ( x ) − f ( 1 ) ∣ + f ( 1 ) x ≤ 1 δ 0 + 1 + ∣ f ( 1 ) ∣ . ■ \leq \frac{n+1}{x} \leq \frac{\frac{x-1}{\delta_{0}}+1}{x} \leq \frac{1}{\delta_{0}}+1
\left|\frac{f(x)}{x}\right| \leq \frac{|f(x)-f(1)|+f(1)}{x} \leq \frac{1}{\delta_{0}}+1+|f(1)|.\blacksquare ≤ x n + 1 ≤ x δ 0 x − 1 + 1 ≤ δ 0 1 + 1 ∣ ∣ ∣ ∣ x f ( x ) ∣ ∣ ∣ ∣ ≤ x ∣ f ( x ) − f ( 1 ) ∣ + f ( 1 ) ≤ δ 0 1 + 1 + ∣ f ( 1 ) ∣ . ■
◀ \blacktriangleleft ◀
【题2 2 2 】
利用 T a y l o r Taylor T a y l o r 公式把 f ( 0 ) , f ( 1 ) f(0), f(1) f ( 0 ) , f ( 1 ) 在点 x = 1 2 x=\frac{1}{2} x = 2 1 处展开得到
f ( 0 ) = f ( 1 2 ) + f ′ ( 1 2 ) ( 0 − 1 2 ) + 1 2 f ′ ′ ( 1 2 ) ( 0 − 1 2 ) 2 + 1 6 f ′ ′ ′ ( ξ 1 ) ( 0 − 1 2 ) 3 , ξ 1 ∈ ( 0 , 1 2 ) , f ( 1 ) = f ( 1 2 ) + f ′ ( 1 2 ) ( 1 − 1 2 ) + 1 2 f ′ ′ ( 1 2 ) ( 1 − 1 2 ) 2 + 1 6 f ′ ′ ′ ( ξ 2 ) ( 1 − 1 2 ) 3 , ξ 2 ∈ ( 1 2 , 1 ) . \begin{array}{l}
f(0)=f\left(\frac{1}{2}\right)+f^{\prime}\left(\frac{1}{2}\right)\left(0-\frac{1}{2}\right)+\frac{1}{2} f^{\prime \prime}\left(\frac{1}{2}\right)\left(0-\frac{1}{2}\right)^{2}+\frac{1}{6} f^{\prime \prime \prime}\left(\xi_{1}\right)\left(0-\frac{1}{2}\right)^{3}, \quad \xi_{1} \in\left(0, \frac{1}{2}\right), \\
f(1)=f\left(\frac{1}{2}\right)+f^{\prime}\left(\frac{1}{2}\right)\left(1-\frac{1}{2}\right)+\frac{1}{2} f^{\prime \prime}\left(\frac{1}{2}\right)\left(1-\frac{1}{2}\right)^{2}+\frac{1}{6} f^{\prime \prime \prime}\left(\xi_{2}\right)\left(1-\frac{1}{2}\right)^{3}, \quad \xi_{2} \in\left(\frac{1}{2}, 1\right) .
\end{array} f ( 0 ) = f ( 2 1 ) + f ′ ( 2 1 ) ( 0 − 2 1 ) + 2 1 f ′ ′ ( 2 1 ) ( 0 − 2 1 ) 2 + 6 1 f ′ ′ ′ ( ξ 1 ) ( 0 − 2 1 ) 3 , ξ 1 ∈ ( 0 , 2 1 ) , f ( 1 ) = f ( 2 1 ) + f ′ ( 2 1 ) ( 1 − 2 1 ) + 2 1 f ′ ′ ( 2 1 ) ( 1 − 2 1 ) 2 + 6 1 f ′ ′ ′ ( ξ 2 ) ( 1 − 2 1 ) 3 , ξ 2 ∈ ( 2 1 , 1 ) .
两式相减并注意到 f ( 0 ) = 1 , f ( 1 ) = 2 , f ′ ( 1 2 ) = 0 f(0)=1, f(1)=2, f^{\prime}\left(\frac{1}{2}\right)=0 f ( 0 ) = 1 , f ( 1 ) = 2 , f ′ ( 2 1 ) = 0 , 就有 f ′ ′ ′ ( ξ 1 ) + f ′ ′ ′ ( ξ 2 ) = 48 f^{\prime \prime \prime}\left(\xi_{1}\right)+f^{\prime \prime \prime}\left(\xi_{2}\right)=48 f ′ ′ ′ ( ξ 1 ) + f ′ ′ ′ ( ξ 2 ) = 4 8 , 这表明至少存在一点 ξ ∈ ( 0 , 1 ) \xi \in(0,1) ξ ∈ ( 0 , 1 ) , 使得 ∣ f ′ ′ ′ ( ξ ) ∣ ⩾ 24. ■ \left|f^{\prime \prime \prime}(\xi)\right| \geqslant 24.\blacksquare ∣ f ′ ′ ′ ( ξ ) ∣ ⩾ 2 4 . ■
2022.8
2022.8.31
请从以下题目中任选一题作答
【题1 1 1 】
设 f ( x ) f(x) f ( x ) 在 [ a , b ] [a, b] [ a , b ] 上连续, 在 ( a , b ) (a, b) ( a , b ) 内可导, 且 f ( a ) ⋅ f ( b ) > 0 , f ( a ) ⋅ f ( a + b 2 ) < 0 f(a) \cdot f(b)>0, f(a) · f\left(\frac{a+b}{2}\right)<0 f ( a ) ⋅ f ( b ) > 0 , f ( a ) ⋅ f ( 2 a + b ) < 0 , 试证: 至少有一点 ξ ∈ ( a , b ) \xi \in(a, b) ξ ∈ ( a , b ) , 使 f ′ ( ξ ) = f ( ξ ) . ▶ f^{\prime}(\xi)=f(\xi).\blacktriangleright f ′ ( ξ ) = f ( ξ ) . ▶
【题2 2 2 】
设 f ( x ) = 2 x ( 1 − x ) , x ∈ R f(x)=2 x(1-x), x \in R f ( x ) = 2 x ( 1 − x ) , x ∈ R . 定义 f n = f ∘ ⋯ ∘ f ⏞ n f^{n}=\overbrace{f \circ \cdots \circ f}^{n} f n = f ∘ ⋯ ∘ f n
( 1 ) (1) ( 1 ) 求 lim n → ∞ ∫ 0 1 f n ( x ) d x \displaystyle\lim _{n \rightarrow \infty} \int_{0}^{1} f^{n}(x) d x n → ∞ lim ∫ 0 1 f n ( x ) d x ;
( 2 ) (2) ( 2 ) 计算 ∫ 0 1 f n ( x ) d x . ▶ \int_{0}^{1} f^{n}(x) d x.\blacktriangleright ∫ 0 1 f n ( x ) d x . ▶
◀ \blacktriangleleft ◀
【题1 1 1 】
设 F ( x ) = f ( a ) e − x f ( x ) F(x)=f(a) \mathrm{e}^{-x} f(x) F ( x ) = f ( a ) e − x f ( x ) , 则
F ( a ) = f 2 ( a ) e − a > 0 , F ( a + b 2 ) = f ( a ) f ( a + b 2 ) e a + b 2 < 0 , F ( b ) = f ( a ) f ( b ) e − b > 0. \begin{aligned}
F(a) &=f^{2}(a) \mathrm{e}^{-a}>0, \\
F\left(\frac{a+b}{2}\right) &=f(a) f\left(\frac{a+b}{2}\right) \mathrm{e}^{\frac{a+b}{2}}<0, \\
F(b) &=f(a) f(b) \mathrm{e}^{-b}>0 .
\end{aligned} F ( a ) F ( 2 a + b ) F ( b ) = f 2 ( a ) e − a > 0 , = f ( a ) f ( 2 a + b ) e 2 a + b < 0 , = f ( a ) f ( b ) e − b > 0 .
所以由零点定理知, 存在 ξ 1 ∈ ( a , a + b 2 ) , ξ 2 ∈ ( a + b 2 , b ) \xi_{1} \in\left(a, \frac{a+b}{2}\right), \xi_{2} \in\left(\frac{a+b}{2}, b\right) ξ 1 ∈ ( a , 2 a + b ) , ξ 2 ∈ ( 2 a + b , b ) , 使 F ( ξ 1 ) = 0 , F ( ξ 2 ) = 0 F\left(\xi_{1}\right)=0, F\left(\xi_{2}\right)=0 F ( ξ 1 ) = 0 , F ( ξ 2 ) = 0 , 再在区间 [ ξ 1 , ξ 2 ] \left[\xi_{1}, \xi_{2}\right] [ ξ 1 , ξ 2 ] 上使用 R o l l e \mathbf{Rolle} R o l l e 定理即得结果. ■ .\blacksquare . ■
◀ \blacktriangleleft ◀
【题2 2 2 】
( 1 ) (1) ( 1 ) 取定 x = x 0 ∈ ( 0 , 1 ) x=x_{0} \in(0,1) x = x 0 ∈ ( 0 , 1 ) . 令 x n = f n ( x 0 ) , n = 1 , 2 , ⋯ x_{n}=f^{n}\left(x_{0}\right), n=1,2, \cdots x n = f n ( x 0 ) , n = 1 , 2 , ⋯ 则得到 x 1 ∈ ( 0 , 1 2 ] , x 1 ≤ f ( x 1 ) ≤ 1 2 x_{1} \in\left(0, \frac{1}{2}\right], x_{1} \leq f\left(x_{1}\right) \leq \frac{1}{2} x 1 ∈ ( 0 , 2 1 ] , x 1 ≤ f ( x 1 ) ≤ 2 1 , 进一 步利用数学归纳法可得到 x n ≤ f ( x n ) ≤ 1 2 x_{n} \leq f\left(x_{n}\right) \leq \frac{1}{2} x n ≤ f ( x n ) ≤ 2 1 , 这样数列 { x n } \left\{x_{n}\right\} { x n } 为一个有界单调非减的数列, 从而极 限存在, 假设 lim n → ∞ x n = l \lim _{n \rightarrow \infty} x_{n}=l lim n → ∞ x n = l , 并且 { x n } \left\{x_{n}\right\} { x n } 满足 x n + 1 = 2 x n ( 1 − x n ) x_{n+1}=2 x_{n}\left(1-x_{n}\right) x n + 1 = 2 x n ( 1 − x n ) , 上式两边取极限得到 l = 2 l ( 1 − l ) l=2 l(1-l) l = 2 l ( 1 − l ) , 从而 l = 0 l=0 l = 0 或者 l = 1 2 l=\frac{1}{2} l = 2 1 , 利用 { x n } \left\{x_{n}\right\} { x n } 为一个单调非减的数列得到 l = 1 2 l=\frac{1}{2} l = 2 1 . 从而利用单调收敛定理可以得到 lim n → ∞ ∫ 0 1 f n ( x ) d x = 1 2 \lim _{n \rightarrow \infty} \int_{0}^{1} f^{n}(x) d x=\frac{1}{2} lim n → ∞ ∫ 0 1 f n ( x ) d x = 2 1
( 2 ) (2) ( 2 ) 因为 f ( x ) = 2 x ( 1 − x ) = 1 2 − 2 ( x − 1 2 ) 2 f(x)=2 x(1-x)=\frac{1}{2}-2\left(x-\frac{1}{2}\right)^{2} f ( x ) = 2 x ( 1 − x ) = 2 1 − 2 ( x − 2 1 ) 2 , 利用数学归纳法可证 f n ( x ) = 1 2 − 2 2 n − 1 ( x − 1 2 ) 2 n f^{n}(x)=\frac{1}{2}-2^{2^{n}-1}\left(x-\frac{1}{2}\right)^{2^{n}} f n ( x ) = 2 1 − 2 2 n − 1 ( x − 2 1 ) 2 n
假设上式对于 n = k n=k n = k 成立, 下证
f k + 1 ( x ) = f k ( f ( x ) ) = 1 2 − 2 2 k − 1 ( ( 1 2 − 2 ( x − 1 2 ) 2 ) − 1 2 ) 2 k f^{k+1}(x)=f^{k}(f(x))=\frac{1}{2}-2^{2^{k}-1}\left(\left(\frac{1}{2}-2\left(x-\frac{1}{2}\right)^{2}\right)-\frac{1}{2}\right)^{2^{k}}
f k + 1 ( x ) = f k ( f ( x ) ) = 2 1 − 2 2 k − 1 ( ( 2 1 − 2 ( x − 2 1 ) 2 ) − 2 1 ) 2 k
= 1 2 − 2 2 k − 1 ( − 2 ( x − 1 2 ) 2 ) 2 k = 1 2 − 2 2 k + 1 − 1 ( x − 1 2 ) 2 k + 1 =\frac{1}{2}-2^{2^{k}-1}\left(-2\left(x-\frac{1}{2}\right)^{2}\right)^{2^{k}}=\frac{1}{2}-2^{2^{k+1}-1}\left(x-\frac{1}{2}\right)^{2^{k+1}}
= 2 1 − 2 2 k − 1 ( − 2 ( x − 2 1 ) 2 ) 2 k = 2 1 − 2 2 k + 1 − 1 ( x − 2 1 ) 2 k + 1
从而可以计算得到
∫ 0 1 f n ( x ) d x = [ 1 2 x − 2 2 n − 1 2 n + 1 ( x − 1 2 ) 2 n + 1 ] ∣ 0 1 = 1 2 − 1 2 ( 2 n + 1 ) . ■ \int_{0}^{1} f^{n}(x) d x=\left.\left[\frac{1}{2} x-\frac{2^{2^{n}-1}}{2^{n}+1}\left(x-\frac{1}{2}\right)^{2^{n}+1}\right]\right|_{0} ^{1}=\frac{1}{2}-\frac{1}{2\left(2^{n}+1\right)}.\blacksquare
∫ 0 1 f n ( x ) d x = [ 2 1 x − 2 n + 1 2 2 n − 1 ( x − 2 1 ) 2 n + 1 ] ∣ ∣ ∣ ∣ ∣ ∣ 0 1 = 2 1 − 2 ( 2 n + 1 ) 1 . ■
2022.8.30
请从以下题目中任选一题作答
【题1 1 1 】求使不等式 ( 1 + 1 n ) n + α ≤ e ≤ ( 1 + 1 n ) n + β \left(1+\frac{1}{n}\right)^{n+\alpha} \leq e \leq\left(1+\frac{1}{n}\right)^{n+\beta} ( 1 + n 1 ) n + α ≤ e ≤ ( 1 + n 1 ) n + β 对所有的自然数 n n n 都成立的最大的数 α \alpha α 和最小的数 β \beta β . ▶ .\blacktriangleright . ▶
【题2 2 2 】
已知 3 3 3 阶实矩阵 A = ( a i j ) A=\left(a_{i j}\right) A = ( a i j ) 满足条件 a i j = A i j ( i , j = 1 , 2 , 3 ) a_{i j}=A_{i j}(i, j=1,2,3) a i j = A i j ( i , j = 1 , 2 , 3 ) , 其中 A i j A_{i j} A i j 是 a i j a_{i j} a i j 的代数余子式, 且 a 33 = − 1 a_{33}=-1 a 3 3 = − 1 . 求解:
( 1 ) ∣ A ∣ (1) |A| ( 1 ) ∣ A ∣ ;
( 2 ) (2) ( 2 ) 方程组 A ( x 1 x 2 x 3 ) = ( 0 0 1 ) A\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right) A ⎝ ⎛ x 1 x 2 x 3 ⎠ ⎞ = ⎝ ⎛ 0 0 1 ⎠ ⎞ 的解. ▶ .\blacktriangleright . ▶
◀ \blacktriangleleft ◀
【题1 1 1 】
已知不等式等价于 ( n + α ) ln ( 1 + 1 n ) ⩽ 1 ⩽ ( n + β ) ln ( 1 + 1 n ) (n+\alpha) \ln \left(1+\frac{1}{n}\right) \leqslant 1 \leqslant(n+\beta) \ln \left(1+\frac{1}{n}\right) ( n + α ) ln ( 1 + n 1 ) ⩽ 1 ⩽ ( n + β ) ln ( 1 + n 1 ) . 所以 α ⩽ 1 ln ( 1 + 1 n ) − n ⩽ β \alpha \leqslant \frac{1}{\ln \left(1+\frac{1}{n}\right)}-n \leqslant \beta α ⩽ l n ( 1 + n 1 ) 1 − n ⩽ β , 令 f ( x ) = 1 ln ( 1 + x ) − 1 x , x ∈ [ 0 , 1 ] f(x)=\frac{1}{\ln (1+x)}-\frac{1}{x}, x \in[0,1] f ( x ) = l n ( 1 + x ) 1 − x 1 , x ∈ [ 0 , 1 ] , 则
f ′ ( x ) = − 1 ln 2 ( 1 + x ) + 1 x 2 = ( 1 + x ) ln 2 ( 1 + x ) − x 2 x 2 ( 1 + x ) ln 2 ( 1 + x ) f^{\prime}(x)=-\frac{1}{\ln ^{2}(1+x)}+\frac{1}{x^{2}}=\frac{(1+x) \ln ^{2}(1+x)-x^{2}}{x^{2}(1+x) \ln ^{2}(1+x)}
f ′ ( x ) = − ln 2 ( 1 + x ) 1 + x 2 1 = x 2 ( 1 + x ) ln 2 ( 1 + x ) ( 1 + x ) ln 2 ( 1 + x ) − x 2
再令 g ( x ) = ( 1 + x ) ln 2 ( 1 + x ) − x 2 , x ∈ [ 0 , 1 ] g(x)=(1+x) \ln ^{2}(1+x)-x^{2}, x \in[0,1] g ( x ) = ( 1 + x ) ln 2 ( 1 + x ) − x 2 , x ∈ [ 0 , 1 ] , 则 g ( 0 ) = 0 g(0)=0 g ( 0 ) = 0 , 且
g ′ ( x ) = ln 2 ( 1 + x ) + 2 ln ( 1 + x ) − 2 x , g ′ ( 0 ) = 0 , g ′ ′ ( x ) = 2 ln ( 1 + x ) 1 + x + 2 1 + x − 2 = 2 [ ln ( 1 + x ) − x ] 1 + x < 0 , \begin{array}{c}
g^{\prime}(x)=\ln ^{2}(1+x)+2 \ln (1+x)-2 x, \quad g^{\prime}(0)=0, \\
g^{\prime \prime}(x)=\frac{2 \ln (1+x)}{1+x}+\frac{2}{1+x}-2=\frac{2[\ln (1+x)-x]}{1+x}<0,
\end{array} g ′ ( x ) = ln 2 ( 1 + x ) + 2 ln ( 1 + x ) − 2 x , g ′ ( 0 ) = 0 , g ′ ′ ( x ) = 1 + x 2 l n ( 1 + x ) + 1 + x 2 − 2 = 1 + x 2 [ l n ( 1 + x ) − x ] < 0 ,
故 g ′ ( x ) g^{\prime}(x) g ′ ( x ) 在 [ 0 , 1 ] [0,1] [ 0 , 1 ] 上严格单调递减, 所以 g ′ ( x ) < g ′ ( 0 ) = 0 g^{\prime}(x)<g^{\prime}(0)=0 g ′ ( x ) < g ′ ( 0 ) = 0 , 同理, g ( x ) g(x) g ( x ) 在 [ 0 , 1 ] [0,1] [ 0 , 1 ] 上也, 严柺单调递减, 故 g ( x ) < g ( 0 ) = 0 g(x)<g(0)=0 g ( x ) < g ( 0 ) = 0 , 即 ( 1 + x ) ln 2 ( 1 + x ) − x 2 < 0 (1+x) \ln ^{2}(1+x)-x^{2}<0 ( 1 + x ) ln 2 ( 1 + x ) − x 2 < 0 , 从而 f ′ ( x ) < 0 ( 0 < x ⩽ 1 ) f^{\prime}(x)<0 \quad(0< x \leqslant 1) f ′ ( x ) < 0 ( 0 < x ⩽ 1 ) , 因此 f ( x ) f(x) f ( x ) 在 ( 0 , 1 ] (0,1] ( 0 , 1 ] 上也严格单调递掝.
令 x = 1 n x=\frac{1}{n} x = n 1 , 则 α ⩽ f ( x ) ⩽ β \alpha \leqslant f(x) \leqslant \beta α ⩽ f ( x ) ⩽ β ,
max α = lim x → 1 − [ 1 ln ( 1 + x ) − 1 x ] = 1 ln 2 − 1 min β = lim x → 0 + [ 1 ln ( 1 + x ) − 1 x ] = lim x → 0 + x − ln ( 1 + x ) x ln ( 1 + x ) = lim x → 0 + 1 ln ( 1 + x ) + 1 1 + x = lim x → 0 + 1 1 + ln ( 1 + x ) + 1 = 1 2 \begin{aligned}
\max \alpha&=\lim _{x \rightarrow 1^{-}}\left[\frac{1}{\ln (1+x)}-\frac{1}{x}\right]=\frac{1}{\ln 2}-1 \\
\min \beta &=\lim _{x \rightarrow 0^{+}}\left[\frac{1}{\ln (1+x)}-\frac{1}{x}\right]=\lim _{x \rightarrow 0^{+}} \frac{x-\ln (1+x)}{x \ln (1+x)}=\lim _{x \rightarrow 0^{+}} \frac{1}{\ln (1+x)+\frac{1}{1+x}} \\
&=\lim _{x \rightarrow 0^{+}} \frac{1}{1+\ln (1+x)+1}=\frac{1}{2}
\end{aligned} max α min β = x → 1 − lim [ ln ( 1 + x ) 1 − x 1 ] = ln 2 1 − 1 = x → 0 + lim [ ln ( 1 + x ) 1 − x 1 ] = x → 0 + lim x ln ( 1 + x ) x − ln ( 1 + x ) = x → 0 + lim ln ( 1 + x ) + 1 + x 1 1 = x → 0 + lim 1 + ln ( 1 + x ) + 1 1 = 2 1
因此, 使不等式对所有的自然数 n n n 都成立的最大的数 α \alpha α 为 1 ln 2 − 1 \frac{1}{\ln 2}-1 l n 2 1 − 1 , 最小的数 β \beta β 为 1 2 . ■ \frac{1}{2}.\blacksquare 2 1 . ■
◀ \blacktriangleleft ◀
【题2 2 2 】
因 a i j = A i j a_{i j}=A_{i j} a i j = A i j , 则 A ′ = A ∗ \boldsymbol{A}^{\prime}=\boldsymbol{A}^{*} A ′ = A ∗ , 且 A A ′ = A A ∗ = ∣ A ∣ E \boldsymbol{A} \boldsymbol{A}^{\prime}=\boldsymbol{A} \boldsymbol{A}^{*}=|\boldsymbol{A}| \boldsymbol{E} A A ′ = A A ∗ = ∣ A ∣ E , 两边取行列式, 得
∣ A ∣ 2 = ∣ A ∣ 3 , ∣ A ∣ 2 ( ∣ A ∣ − 1 ) = 0 |\boldsymbol{A}|^{2}=|\boldsymbol{A}|^{3},|\boldsymbol{A}|^{2}(|\boldsymbol{A}|-1)=0
∣ A ∣ 2 = ∣ A ∣ 3 , ∣ A ∣ 2 ( ∣ A ∣ − 1 ) = 0
从而
∣ A ∣ = 0 或 ∣ A ∣ = 1 |\boldsymbol{A}|=0 \text { 或 }|\boldsymbol{A}|=1
∣ A ∣ = 0 或 ∣ A ∣ = 1
把 ∣ A ∣ |A| ∣ A ∣ 按第 3 行展开, 得
∣ A ∣ = a 31 A 31 + a 32 A 32 + a 33 A 33 = a 31 2 + a 32 2 + a 33 2 |\boldsymbol{A}|=a_{31} A_{31}+a_{32} A_{32}+a_{33} A_{33}=a_{31}^{2}+a_{32}^{2}+a_{33}^{2}
∣ A ∣ = a 3 1 A 3 1 + a 3 2 A 3 2 + a 3 3 A 3 3 = a 3 1 2 + a 3 2 2 + a 3 3 2
因 a 33 = − 1 a_{33}=-1 a 3 3 = − 1 , 则 ∣ A ∣ ≠ 0 |\boldsymbol{A}| \neq 0 ∣ A ∣ = 0 , 于是 ∣ A ∣ = 1 |\boldsymbol{A}|=1 ∣ A ∣ = 1 , 且 a 31 = a 32 = 0 a_{31}=a_{32}=0 a 3 1 = a 3 2 = 0 ; 由 ∣ A ∣ = 1 |\boldsymbol{A}|=1 ∣ A ∣ = 1 可知, A − 1 = A ′ \boldsymbol{A}^{-1}= \boldsymbol{A}^{\prime} A − 1 = A ′ , 则
A ( x 1 x 2 x 3 ) = ( 0 0 1 ) , ( x 1 x 2 x 3 ) = A ′ ( 0 0 1 ) \boldsymbol{A}\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\boldsymbol{A}^{\prime}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) A ⎝ ⎛ x 1 x 2 x 3 ⎠ ⎞ = ⎝ ⎛ 0 0 1 ⎠ ⎞ , ⎝ ⎛ x 1 x 2 x 3 ⎠ ⎞ = A ′ ⎝ ⎛ 0 0 1 ⎠ ⎞
( x 1 x 2 x 3 ) = ( a 31 a 32 a 33 ) \left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
a_{31} \\
a_{32} \\
a_{33}
\end{array}\right) ⎝ ⎛ x 1 x 2 x 3 ⎠ ⎞ = ⎝ ⎛ a 3 1 a 3 2 a 3 3 ⎠ ⎞
所以, x 1 = a 31 = 0 , x 2 = a 32 = 0 , x 3 = a 33 = − 1. ■ x_{1}=a_{31}=0, x_{2}=a_{32}=0, x_{3}=a_{33}=-1.\blacksquare x 1 = a 3 1 = 0 , x 2 = a 3 2 = 0 , x 3 = a 3 3 = − 1 . ■
2022.8.29
请从以下题目中任选一题作答
【题1 1 1 】在 x O y x O y x O y 平面上重叠地放有边长为 ∣ a ∣ + ∣ b ∣ |a|+|b| ∣ a ∣ + ∣ b ∣ 的两个正方形 S 1 S_{1} S 1 和 S 2 S_{2} S 2 (它们的中心位于原点, 边与坐标轴平行), 其中 a , b a, b a , b 是使极限 lim x → 0 e x − 1 + a x 1 + b x x 3 \displaystyle\lim _{x \rightarrow 0} \frac{e^{x}-\frac{1+a x}{1+b x}}{x^{3}} x → 0 lim x 3 e x − 1 + b x 1 + a x 存在的常数. 现将 S 2 S_{2} S 2 平移到正方形 S t S_{t} S t , 其中心点为 t t t . 设 S 1 ⋂ S 2 S_{1} \bigcap S_{2} S 1 ⋂ S 2 的面积不小于 1 2 \frac{1}{2} 2 1 , 求动点 t t t 在第一象限内变动时, 其变动范围 D D D 的面积. ▶ .\blacktriangleright . ▶
【题2 2 2 】请写出一个以 2 + 3 \sqrt{2}+\sqrt{3} 2 + 3 为根的有理系数首一不可约多项式 f ( x ) f(x) f ( x ) , 并证明 f ( x ) f(x) f ( x ) 的不可约性. ▶ .\blacktriangleright . ▶
◀ \blacktriangleleft ◀
【题1 1 1 】
由极限
lim x → 0 e x − 1 + a x 1 + b x x 3 = lim x → 0 e x ( 1 + b x ) − ( 1 + a x ) x 3 ( 1 + b x ) \displaystyle\lim _{x \rightarrow 0} \frac{e^{x}-\frac{1+a x}{1+b x}}{x^{3}}=\lim _{x \rightarrow 0} \frac{e^{x}(1+b x)-(1+a x)}{x^{3}(1+b x)}
x → 0 lim x 3 e x − 1 + b x 1 + a x = x → 0 lim x 3 ( 1 + b x ) e x ( 1 + b x ) − ( 1 + a x )
= lim x → 0 ( 1 + x + 1 2 x 2 + 1 6 x 3 + o ( x 3 ) ) ( 1 + b x ) − ( 1 + a x ) x 3 = lim x → 0 [ 1 + ( 1 + b ) x + ( 1 2 + b ) x 2 + ( 1 6 + b 2 ) x 3 + o ( x 3 ) ] − ( 1 + a x ) x 3 = lim x → 0 [ ( 1 − a + b ) x + ( 1 2 + b ) x 2 + ( 1 6 + b 2 ) x 3 + o ( x 3 ) ] x 3 \begin{array}{l}
=\displaystyle\lim _{x \rightarrow 0} \frac{\left(1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+o\left(x^{3}\right)\right)(1+b x)-(1+a x)}{x^{3}} \\
=\displaystyle\lim _{x \rightarrow 0} \frac{\left[1+(1+b) x+\left(\frac{1}{2}+b\right) x^{2}+\left(\frac{1}{6}+\frac{b}{2}\right) x^{3}+o\left(x^{3}\right)\right]-(1+a x)}{x^{3}} \\
=\displaystyle\lim _{x \rightarrow 0} \frac{\left[(1-a+b) x+\left(\frac{1}{2}+b\right) x^{2}+\left(\frac{1}{6}+\frac{b}{2}\right) x^{3}+o\left(x^{3}\right)\right]}{x^{3}}
\end{array} = x → 0 lim x 3 ( 1 + x + 2 1 x 2 + 6 1 x 3 + o ( x 3 ) ) ( 1 + b x ) − ( 1 + a x ) = x → 0 lim x 3 [ 1 + ( 1 + b ) x + ( 2 1 + b ) x 2 + ( 6 1 + 2 b ) x 3 + o ( x 3 ) ] − ( 1 + a x ) = x → 0 lim x 3 [ ( 1 − a + b ) x + ( 2 1 + b ) x 2 + ( 6 1 + 2 b ) x 3 + o ( x 3 ) ]
存在, 可得方程组
{ 1 − a + b = 0 , 1 2 + b = 0. \left\{\begin{array}{c}
1-a+b=0, \\
\frac{1}{2}+b=0 .
\end{array}\right. { 1 − a + b = 0 , 2 1 + b = 0 .
解此方程组得 a = 1 2 , b = − 1 2 a=\frac{1}{2}, b=-\frac{1}{2} a = 2 1 , b = − 2 1 . 于是 ∣ a ∣ + ∣ b ∣ = 1 |a|+|b|=1 ∣ a ∣ + ∣ b ∣ = 1 . 由于点 t t t 是 S t S_{t} S t 的中心, 设其坐标为 ( x , y ) (x, y) ( x , y ) , 则 S 1 ∩ S 2 S_{1} \cap S_{2} S 1 ∩ S 2 的面积=图中矩形 A B C D \mathrm{ABCD} A B C D 的面积 = ∣ A B ∣ ⋅ ∣ A D ∣ =|A B| \cdot|A D| = ∣ A B ∣ ⋅ ∣ A D ∣ ,
其中 ∣ A B ∣ = ∣ A M ∣ − ∣ M B ∣ = 1 − x |A B|=|A M|-|M B|=1-x ∣ A B ∣ = ∣ A M ∣ − ∣ M B ∣ = 1 − x , 同理 ∣ A D ∣ = 1 − y |A D|=1-y ∣ A D ∣ = 1 − y 。于是
D = { ( x , y ) : ( 1 − x ) ( 1 − y ) ≥ 1 2 , 0 ≤ x ≤ 1 2 , 0 ≤ y ≤ 1 2 } D=\left\{(x, y):(1-x)(1-y) \geq \frac{1}{2}, 0 \leq x \leq \frac{1}{2}, 0 \leq y \leq \frac{1}{2}\right\}
D = { ( x , y ) : ( 1 − x ) ( 1 − y ) ≥ 2 1 , 0 ≤ x ≤ 2 1 , 0 ≤ y ≤ 2 1 }
故 D D D 的面积为
S = ∫ 0 1 2 [ 1 − 1 2 ( 1 − x ) ] d x = 1 2 − 1 2 ln 2. ■ S=\int_{0}^{\frac{1}{2}}\left[1-\frac{1}{2(1-x)}\right] d x=\frac{1}{2}-\frac{1}{2} \ln 2.\blacksquare
S = ∫ 0 2 1 [ 1 − 2 ( 1 − x ) 1 ] d x = 2 1 − 2 1 ln 2 . ■
◀ \blacktriangleleft ◀
【题2 2 2 】注 意 到 , f ( x ) = x 4 − 10 x 2 + 1 = [ ( x 2 − 1 ) − 2 2 x ] [ ( x 2 − 1 ) + 2 2 x ] = [ ( x − 2 ) − 3 ] [ ( x − 2 ) + 3 ] [ ( x 2 − 1 ) + 2 2 x ] f(x)=x^{4}-10 x^{2}+1=\left[\left(x^{2}-1\right)-2 \sqrt{2} x\right]\left[\left(x^{2}-1\right)+2 \sqrt{2} x\right] =[(x-\sqrt{2})-\sqrt{3}][(x-\sqrt{2})+\sqrt{3}]\left[\left(x^{2}-1\right)+2 \sqrt{2} x\right] f ( x ) = x 4 − 1 0 x 2 + 1 = [ ( x 2 − 1 ) − 2 2 x ] [ ( x 2 − 1 ) + 2 2 x ] = [ ( x − 2 ) − 3 ] [ ( x − 2 ) + 3 ] [ ( x 2 − 1 ) + 2 2 x ]
下证: f ( x ) f(x) f ( x ) 的不可约性.
(1) 若 f ( x ) f(x) f ( x ) 能分解成一次与三次有理系数多项式的乘积,
则 f ( x ) f(x) f ( x ) 存在有理根.
而整系数多项式 f ( x ) f(x) f ( x ) 的有理根只可能为 ± 1 \pm 1 ± 1 , 但验证可知 f ( ± 1 ) ≠ 0 f(\pm 1) \neq 0 f ( ± 1 ) = 0 ,
所以该情形不可能出现.
(2) 若 f ( x ) f(x) f ( x ) 能分解成两个 2 2 2 次有理系数多项式的乘积, 即 f ( x ) = f 1 ( x ) f 2 ( x ) f(x)=f_{1}(x) f_{2}(x) f ( x ) = f 1 ( x ) f 2 ( x ) ,
则 f ( x ) = f 1 ( x ) f 2 ( x ) f(x)=f_{1}(x) f_{2}(x) f ( x ) = f 1 ( x ) f 2 ( x ) 自然也可视为实数域上的因式分解,
而 f ( x ) = ( x − 2 − 3 ) ( x − 2 + 3 ) ( x + 2 − 3 ) ( x + 2 + 3 ) f(x)=(x-\sqrt{2}-\sqrt{3})(x-\sqrt{2}+\sqrt{3})(x+\sqrt{2}-\sqrt{3})(x+\sqrt{2}+\sqrt{3}) f ( x ) = ( x − 2 − 3 ) ( x − 2 + 3 ) ( x + 2 − 3 ) ( x + 2 + 3 ) ,
根据 f ( x ) f(x) f ( x ) 在实数域上因式分解的唯一性可知, f 1 ( x ) , f 2 ( x ) f_{1}(x), f_{2}(x) f 1 ( x ) , f 2 ( x ) 非有理系数多项式, 矛盾!
所以 f ( x ) f(x) f ( x ) 在有理数域上不可约. ■ .\blacksquare . ■
2022.8.28
【题】设 f ( x ) f(x) f ( x ) 在 [ 0 , π 2 ] \left[0, \frac{\pi}{2}\right] [ 0 , 2 π ] 上连续, ∫ 0 π 2 f ( x ) sin x d x = ∫ 0 π 2 f ( x ) cos x d x = 0 \int_{0}^{\frac{\pi}{2}} f(x) \sin x d x=\int_{0}^{\frac{\pi}{2}} f(x) \cos x d x=0 ∫ 0 2 π f ( x ) sin x d x = ∫ 0 2 π f ( x ) cos x d x = 0 . 试证: f ( x ) f(x) f ( x ) 在 ( 0 , π 2 ) \left(0, \frac{\pi}{2}\right) ( 0 , 2 π ) 内至少有两个零点. ▶ .\blacktriangleright . ▶
◀ \blacktriangleleft ◀
若 f ( x ) f(x) f ( x ) 在 ( 0 , π 2 ) \left(0, \frac{\pi}{2}\right) ( 0 , 2 π ) 无零点, 因 f ( x ) f(x) f ( x ) 连续, f ( x ) f(x) f ( x ) 在 ( 0 , π 2 ) \left(0, \frac{\pi}{2}\right) ( 0 , 2 π ) 恒保持同号, 例如 f ( x ) > 0 f(x)>0 f ( x ) > 0 则 得估计 ∫ 0 π 2 f ( x ) sin x d x > 0 \int_{0}^{\frac{\pi}{2}} f(x) \sin x d x>0 ∫ 0 2 π f ( x ) sin x d x > 0 与已知条件矛盾, 可见 ( 0 , π 2 ) \left(0, \frac{\pi}{2}\right) ( 0 , 2 π ) 中至少有一个零点 x 0 ∈ ( 0 , π 2 ) x_{0} \in\left(0, \frac{\pi}{2}\right) x 0 ∈ ( 0 , 2 π ) 。
若f ( x ) f(x) f ( x ) 除 x 0 x_{0} x 0 外在 ( 0 , π 2 ) \left(0, \frac{\pi}{2}\right) ( 0 , 2 π ) 内再无零点, 则 f ( x ) f(x) f ( x ) 在 ( 0 , x 0 ) \left(0, x_{0}\right) ( 0 , x 0 ) 与 ( x 0 , π 2 ) \left(x_{0}, \frac{\pi}{2}\right) ( x 0 , 2 π ) 内分别保持不变号:
( 1 ) (1) ( 1 ) 若 f f f 在此二区间符号相反, 则 f ( x ) sin ( x − x 0 ) f(x) \sin \left(x-x_{0}\right) f ( x ) sin ( x − x 0 ) 恒正或恒负。从而
∫ 0 π 2 f ( x ) sin ( x − x 0 ) d x > 0 或 < 0 \int_{0}^{\frac{\pi}{2}} f(x) \sin \left(x-x_{0}\right) d x>0 \text { 或 }<0
∫ 0 2 π f ( x ) sin ( x − x 0 ) d x > 0 或 < 0
另一方面, 由已知条件, 有
∫ 0 π 2 f ( x ) sin ( x − x 0 ) d x = cos x 0 ∫ 0 π 2 f ( x ) sin x d x − sin x 0 ∫ 0 π 2 f ( x ) cos x d x = 0 , \int_{0}^{\frac{\pi}{2}} f(x) \sin \left(x-x_{0}\right) d x=\cos x_{0} \int_{0}^{\frac{\pi}{2}} f(x) \sin x d x-\sin x_{0} \int_{0}^{\frac{\pi}{2}} f(x) \cos x d x=0,
∫ 0 2 π f ( x ) sin ( x − x 0 ) d x = cos x 0 ∫ 0 2 π f ( x ) sin x d x − sin x 0 ∫ 0 2 π f ( x ) cos x d x = 0 ,
矛盾。
( 2 ) (2) ( 2 ) 若 f f f 在此二区间符号相同, 则 f ( x ) cos ( x − x 0 ) f(x) \cos \left(x-x_{0}\right) f ( x ) cos ( x − x 0 ) 恒正或恒负, 同样可推出矛盾。■ \blacksquare ■
2022.8.27
【题】 设函数 f ( x ) f(x) f ( x ) 在区间 [ 0 , 1 ] [0,1] [ 0 , 1 ] 上 Riemann 可积, 在 x = 1 x=1 x = 1 可导, f ( 1 ) = 0 , f ′ ( 1 ) = a f(1)=0, f^{\prime}(1)=a f ( 1 ) = 0 , f ′ ( 1 ) = a , 证明: lim n → ∞ n 2 ∫ 0 1 x n f ( x ) d x = − a . ▶ \displaystyle\lim _{n \rightarrow \infty} n^{2} \int_{0}^{1} x^{n} f(x) \mathrm{d} x=-a.\blacktriangleright n → ∞ lim n 2 ∫ 0 1 x n f ( x ) d x = − a . ▶
◀ \blacktriangleleft ◀
记 M = sup n → ∞ ∣ f ( x ) ∣ < + ∞ M=\displaystyle\sup _{n \rightarrow \infty}|f(x)|<+\infty M = n → ∞ sup ∣ f ( x ) ∣ < + ∞ , 由 Taylor 展开式
f ( x ) = f ( 1 ) + f ′ ( 1 ) ( x − 1 ) + r ( x ) = a ( x − 1 ) + r ( x ) f(x)=f(1)+f^{\prime}(1)(x-1)+r(x)=a(x-1)+r(x)
f ( x ) = f ( 1 ) + f ′ ( 1 ) ( x − 1 ) + r ( x ) = a ( x − 1 ) + r ( x )
因为 r ( x ) = o ( x − 1 ) r(x)=o(x-1) r ( x ) = o ( x − 1 ) , 所以, 对于任意 ε > 0 \varepsilon>0 ε > 0 , 存在 δ ∈ ( 0 , 1 ) \delta \in(0,1) δ ∈ ( 0 , 1 ) , 使得当 δ < x ⩽ 1 \delta<x \leqslant 1 δ < x ⩽ 1 时. 有
∣ r ( x ) ∣ ⩽ ε ( 1 − x ) |r(x)| \leqslant \varepsilon(1-x)
∣ r ( x ) ∣ ⩽ ε ( 1 − x )
于是,我们有
∫ 0 1 x n f ( x ) d x = ∫ 0 δ x n f ( x ) d x + ∫ δ 1 a x n ( x − 1 ) d x + ∫ δ 1 x n r ( x ) d x \int_{0}^{1} x^{n} f(x) \mathrm{d} x=\int_{0}^{\delta} x^{n} f(x) \mathrm{d} x+\int_{\delta}^{1} a x^{n}(x-1) \mathrm{d} x+\int_{\delta}^{1} x^{n} r(x) \mathrm{d} x
∫ 0 1 x n f ( x ) d x = ∫ 0 δ x n f ( x ) d x + ∫ δ 1 a x n ( x − 1 ) d x + ∫ δ 1 x n r ( x ) d x
记 R 1 = ∫ 0 δ x n f ( x ) d x , R 2 = ∫ δ 1 a x n ( x − 1 ) d x , R 3 = ∫ δ 1 x n r ( x ) d x , R_{1}=\int_{0}^{\delta} x^{n} f(x) \mathrm{d} x, R_{2}=\int_{\delta}^{1} a x^{n}(x-1) \mathrm{d} x, R_{3}=\int_{\delta}^{1} x^{n} r(x) \mathrm{d} x , R 1 = ∫ 0 δ x n f ( x ) d x , R 2 = ∫ δ 1 a x n ( x − 1 ) d x , R 3 = ∫ δ 1 x n r ( x ) d x , 注意到
∣ R 1 ∣ ⩽ M ∫ 0 δ x n d x = M ⋅ δ n + 1 n + 1 , R 2 = − a ( n + 1 ) ( n + 2 ) + a ( δ n + 1 n + 1 − δ n + 2 n + 2 ) , ∣ R 3 ∣ ⩽ ∫ δ 1 ∣ r ( x ) ∣ d x ⩽ ε ∫ δ 1 x n ( 1 − x ) d x ⩽ ε ∫ 0 1 x n ( 1 − x ) d x = ε ( n + 1 ) ( n + 2 ) , \begin{array}{c}
\left|R_{1}\right| \leqslant M \int_{0}^{\delta} x^{n} \mathrm{~d} x=M \cdot \frac{\delta^{n+1}}{n+1}, \\
R_{2}=\frac{-a}{(n+1)(n+2)}+a\left(\frac{\delta^{n+1}}{n+1}-\frac{\delta^{n+2}}{n+2}\right), \\
\left|R_{3}\right| \leqslant \int_{\delta}^{1}|r(x)| \mathrm{d} x \leqslant \varepsilon \int_{\delta}^{1} x^{n}(1-x) \mathrm{d} x \leqslant \varepsilon \int_{0}^{1} x^{n}(1-x) \mathrm{d} x=\frac{\varepsilon}{(n+1)(n+2)},
\end{array} ∣ R 1 ∣ ⩽ M ∫ 0 δ x n d x = M ⋅ n + 1 δ n + 1 , R 2 = ( n + 1 ) ( n + 2 ) − a + a ( n + 1 δ n + 1 − n + 2 δ n + 2 ) , ∣ R 3 ∣ ⩽ ∫ δ 1 ∣ r ( x ) ∣ d x ⩽ ε ∫ δ 1 x n ( 1 − x ) d x ⩽ ε ∫ 0 1 x n ( 1 − x ) d x = ( n + 1 ) ( n + 2 ) ε ,
我们有
lim n → ∞ ∣ n 2 R 1 ∣ = 0 , lim n → ∞ ∣ n 2 R 2 + a ∣ = 0 , lim sup n → ∞ ∣ n 2 R 3 ∣ ⩽ ε , \begin{array}{l}
\displaystyle\lim _{n \rightarrow \infty}\left|n^{2} R_{1}\right|=0, \\
\displaystyle\lim _{n \rightarrow \infty}\left|n^{2} R_{2}+a\right|=0, \\
\displaystyle\limsup _{n \rightarrow \infty}\left|n^{2} R_{3}\right| \leqslant \varepsilon,
\end{array} n → ∞ lim ∣ ∣ ∣ n 2 R 1 ∣ ∣ ∣ = 0 , n → ∞ lim ∣ ∣ ∣ n 2 R 2 + a ∣ ∣ ∣ = 0 , n → ∞ l i m s u p ∣ ∣ ∣ n 2 R 3 ∣ ∣ ∣ ⩽ ε ,
所以, lim sup n → ∞ ∣ n 2 ∫ 0 1 x n f ( x ) d x + a ∣ ⩽ ε \displaystyle\limsup _{n \rightarrow \infty}\left|n^{2} \int_{0}^{1} x^{n} f(x) \mathrm{d} x+a\right| \leqslant \varepsilon n → ∞ l i m s u p ∣ ∣ ∣ ∣ ∣ n 2 ∫ 0 1 x n f ( x ) d x + a ∣ ∣ ∣ ∣ ∣ ⩽ ε .
由 ε \varepsilon ε 的任意性, 即得 lim n → ∞ n 2 ∫ 0 1 x n f ( x ) d x = − a . ■ \displaystyle\lim _{n \rightarrow \infty} n^{2} \int_{0}^{1} x^{n} f(x) \mathrm{d} x=-a.\blacksquare n → ∞ lim n 2 ∫ 0 1 x n f ( x ) d x = − a . ■
2022.8.26
【题】试证明:
lim n → ∞ [ 3 ⋅ 7 ⋯ ⋯ ( 4 n − 1 ) 5 ⋅ 9 ⋯ ⋯ ( 4 n + 1 ) ] 2 ( 4 n + 3 ) = 3 ∫ 0 π 2 sin 3 2 x d x ∫ 0 π 2 sin 1 2 x d x . ▶ \displaystyle\lim _{n \rightarrow \infty}\left[\frac{3 \cdot 7 \cdots \cdots(4 n-1)}{5 \cdot 9 \cdots \cdots(4 n+1)}\right]^{2}(4 n+3)=3 \frac{\int_{0}^{\frac{\pi}{2}} \sin ^{\frac{3}{2}} x \mathrm{~d} x}{\int_{0}^{\frac{\pi}{2}} \sin ^{\frac{1}{2}} x \mathrm{~d} x}.\blacktriangleright
n → ∞ lim [ 5 ⋅ 9 ⋯ ⋯ ( 4 n + 1 ) 3 ⋅ 7 ⋯ ⋯ ( 4 n − 1 ) ] 2 ( 4 n + 3 ) = 3 ∫ 0 2 π sin 2 1 x d x ∫ 0 2 π sin 2 3 x d x . ▶
◀ \blacktriangleleft ◀
设 I y = ∫ 0 π 2 sin y x d x ( y ⩾ 0 ) I_{y}=\int_{0}^{\frac{\pi}{2}} \sin ^{y} x \mathrm{~d} x(y \geqslant 0) I y = ∫ 0 2 π sin y x d x ( y ⩾ 0 ) . 当 y > 2 y>2 y > 2 时,
I y = − ∫ 0 π 2 sin y − 1 t d cos t = ∫ 0 π 2 ( y − 1 ) sin y − 2 t cos 2 t d t = ( y − 1 ) I y − 2 − ( y − 1 ) I y . \begin{aligned}
I_{y} &=-\int_{0}^{\frac{\pi}{2}} \sin ^{y-1} t \mathrm{~d} \cos t=\int_{0}^{\frac{\pi}{2}}(y-1) \sin ^{y-2} t \cos ^{2} t \mathrm{~d} t \\
&=(y-1) I_{y-2}-(y-1) I_{y} .
\end{aligned} I y = − ∫ 0 2 π sin y − 1 t d cos t = ∫ 0 2 π ( y − 1 ) sin y − 2 t cos 2 t d t = ( y − 1 ) I y − 2 − ( y − 1 ) I y .
因此, I y = y − 1 y I y − 2 I_{y}=\frac{y-1}{y} I_{y-2} I y = y y − 1 I y − 2 . 于是, 当 x ⩾ 0 , n ∈ N x \geqslant 0, n \in \mathbf{N} x ⩾ 0 , n ∈ N 时,
I 2 n + x = 2 n − 1 + x 2 n + x ⋅ 2 n − 3 + x 2 n − 2 + x ⋯ ⋯ 1 + x 2 + x ⋅ I x , I 2 n + x + 1 = 2 n + x 2 n + 1 + x ⋅ 2 n − 2 + x 2 n − 1 + x ⋯ 2 + x 3 + x ⋅ I 1 + x . \begin{array}{l}
I_{2 n+x}=\frac{2 n-1+x}{2 n+x} \cdot \frac{2 n-3+x}{2 n-2+x} \cdots \cdots \frac{1+x}{2+x} \cdot I_{x}, \\
I_{2 n+x+1}=\frac{2 n+x}{2 n+1+x} \cdot \frac{2 n-2+x}{2 n-1+x} \cdots \frac{2+x}{3+x} \cdot I_{1+x} .
\end{array} I 2 n + x = 2 n + x 2 n − 1 + x ⋅ 2 n − 2 + x 2 n − 3 + x ⋯ ⋯ 2 + x 1 + x ⋅ I x , I 2 n + x + 1 = 2 n + 1 + x 2 n + x ⋅ 2 n − 1 + x 2 n − 2 + x ⋯ 3 + x 2 + x ⋅ I 1 + x .
由 I 2 n + 1 + x ⩽ I 2 n + x ⩽ I 2 n − 1 + x I_{2 n+1+x} \leqslant I_{2 n+x} \leqslant I_{2 n-1+x} I 2 n + 1 + x ⩽ I 2 n + x ⩽ I 2 n − 1 + x , 我们有
1 ⩽ I 2 n + x I 2 n + 1 + x ⩽ I 2 n − 1 + x I 2 n + 1 + x = 2 n + 1 + x 2 n + x 1 \leqslant \frac{I_{2 n+x}}{I_{2 n+1+x}} \leqslant \frac{I_{2 n-1+x}}{I_{2 n+1+x}}=\frac{2 n+1+x}{2 n+x}
1 ⩽ I 2 n + 1 + x I 2 n + x ⩽ I 2 n + 1 + x I 2 n − 1 + x = 2 n + x 2 n + 1 + x
两边取极限,整理后即得
lim n → ∞ [ ( 1 + x ) ⋅ ( 3 + x ) ⋯ ( 2 n − 1 + x ) ( 2 + x ) ⋅ ( 4 + x ) ⋯ ( 2 n + x ) ] 2 ( 2 n + 1 + x ) = ( 1 + x ) I 1 + x I x \displaystyle\lim _{n \rightarrow \infty}\left[\frac{(1+x) \cdot(3+x) \cdots(2 n-1+x)}{(2+x) \cdot(4+x) \cdots(2 n+x)}\right]^{2}(2 n+1+x)=(1+x) \frac{I_{1+x}}{I_{x}}
n → ∞ lim [ ( 2 + x ) ⋅ ( 4 + x ) ⋯ ( 2 n + x ) ( 1 + x ) ⋅ ( 3 + x ) ⋯ ( 2 n − 1 + x ) ] 2 ( 2 n + 1 + x ) = ( 1 + x ) I x I 1 + x
令 x = 1 2 x=\frac{1}{2} x = 2 1 , 整理后即得 lim n → ∞ [ 3 ⋅ 7 ⋯ ( 4 n − 1 ) 5 ⋅ 9 ⋯ ⋯ ( 4 n + 1 ) ] 2 ( 4 n + 3 ) = 3 ∫ 0 π 2 sin 3 2 x d x ∫ 0 π 2 sin 1 2 x d x . ■ \displaystyle\lim _{n \rightarrow \infty}\left[\frac{3 \cdot 7 \cdots(4 n-1)}{5 \cdot 9 \cdots \cdots(4 n+1)}\right]^{2}(4 n+3)=3 \frac{\int_{0}^{\frac{\pi}{2}} \sin ^{\frac{3}{2}} x \mathrm{~d} x}{\int_{0}^{\frac{\pi}{2}} \sin ^{\frac{1}{2}} x \mathrm{~d} x} .\blacksquare n → ∞ lim [ 5 ⋅ 9 ⋯ ⋯ ( 4 n + 1 ) 3 ⋅ 7 ⋯ ( 4 n − 1 ) ] 2 ( 4 n + 3 ) = 3 ∫ 0 2 π sin 2 1 x d x ∫ 0 2 π sin 2 3 x d x . ■
2022.8.25
【题】 (1997 国际大学生数学竞赛试题) 设 { a n } n = 1 ∞ \left\{a_{n}\right\}_{n=1}^{\infty} { a n } n = 1 ∞ 是一个正实数列, 并且满足 lim n → ∞ a n = 0 \displaystyle\lim _{n \rightarrow \infty} a_{n}=0 n → ∞ lim a n = 0 . 求 lim n → ∞ 1 n ∑ k = 1 ∞ ln ( k n + a n ) . ▶ \displaystyle\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{\infty} \ln \left(\frac{k}{n}+a_{n}\right).\blacktriangleright n → ∞ lim n 1 k = 1 ∑ ∞ ln ( n k + a n ) . ▶
◀ \blacktriangleleft ◀
我们知道
− 1 = ∫ 0 1 ln x d x = lim n → ∞ 1 n ∑ k = 1 n ln ( k n ) -1=\int_{0}^{1} \ln x \mathrm{~d} x=\displaystyle\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \ln \left(\frac{k}{n}\right)
− 1 = ∫ 0 1 ln x d x = n → ∞ lim n 1 k = 1 ∑ n ln ( n k )
所以
1 n ∑ k = 1 n ln ( k n + a n ) ⩾ 1 n ∑ k = 1 n ln ( k n ) → − 1 ( n → ∞ ) \frac{1}{n} \sum_{k=1}^{n} \ln \left(\frac{k}{n}+a_{n}\right) \geqslant \frac{1}{n} \sum_{k=1}^{n} \ln \left(\frac{k}{n}\right) \rightarrow-1 \quad(n \rightarrow \infty)
n 1 k = 1 ∑ n ln ( n k + a n ) ⩾ n 1 k = 1 ∑ n ln ( n k ) → − 1 ( n → ∞ )
对于给定的 ε > 0 \varepsilon>0 ε > 0 , 存在 n 0 n_{0} n 0 , 使得任意 n ⩾ n 0 n \geqslant n_{0} n ⩾ n 0 , 有 0 < a n < ε 0<a_{n}<\varepsilon 0 < a n < ε . 于是
1 n ∑ k = 1 n ln ( k n + a n ) ⩽ 1 n ∑ k = 1 n ln ( k n + ε ) \frac{1}{n} \sum_{k=1}^{n} \ln \left(\frac{k}{n}+a_{n}\right) \leqslant \frac{1}{n} \sum_{k=1}^{n} \ln \left(\frac{k}{n}+\varepsilon\right)
n 1 k = 1 ∑ n ln ( n k + a n ) ⩽ n 1 k = 1 ∑ n ln ( n k + ε )
因为 lim n → ∞ 1 n ∑ k = 1 n ln ( k n + ε ) = ∫ 0 1 ln ( x + ε ) d x = ∫ 0 1 + ε ln x d x \displaystyle\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \ln \left(\frac{k}{n}+\varepsilon\right)=\int_{0}^{1} \ln (x+\varepsilon) \mathrm{d} x=\int_{0}^{1+\varepsilon} \ln x \mathrm{~d} x n → ∞ lim n 1 k = 1 ∑ n ln ( n k + ε ) = ∫ 0 1 ln ( x + ε ) d x = ∫ 0 1 + ε ln x d x , 所以当 ε → 0 \varepsilon \rightarrow 0 ε → 0 时, 有
lim n → ∞ 1 n ∑ k = 1 ∞ ln ( k n + a n ) = − 1. ■ \displaystyle\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{\infty} \ln \left(\frac{k}{n}+a_{n}\right)=-1.\blacksquare n → ∞ lim n 1 k = 1 ∑ ∞ ln ( n k + a n ) = − 1 . ■
2022.8.24
【题】(1994国际大学生数学竞赛试题)
求极限lim n → ∞ ln 2 n n ∑ k = 2 n − 2 1 ln k ⋅ ln ( n − k ) . ▶ \displaystyle\lim_{n\to \infty}\frac{\ln^2 n}{n}\sum_{k=2}^{n-2}\frac{1}{\ln k·\ln (n-k)}.\blacktriangleright n → ∞ lim n ln 2 n k = 2 ∑ n − 2 ln k ⋅ ln ( n − k ) 1 . ▶
◀ \blacktriangleleft ◀
置 A n = lim n → ∞ ln 2 n n ∑ k = 2 n − 2 1 ln k ⋅ ln ( n − k ) . ▶ A_n=\displaystyle\lim_{n\to \infty}\frac{\ln^2 n}{n}\sum_{k=2}^{n-2}\frac{1}{\ln k·\ln (n-k)}.\blacktriangleright A n = n → ∞ lim n ln 2 n k = 2 ∑ n − 2 ln k ⋅ ln ( n − k ) 1 . ▶
易知A n ≥ ln 2 n n n − 3 ln 2 n = 1 − 3 n . A_n\geq \frac{\ln ^2n}{n}\frac{n-3}{\ln^2n}=1-\frac{3}{n}. A n ≥ n l n 2 n l n 2 n n − 3 = 1 − n 3 .
取 M M M 满足2 ≤ M ≤ n 2 2\leq M \leq \frac{n}{2} 2 ≤ M ≤ 2 n ,由于1 ln k ⋅ ln ( n − k ) \frac{1}{\ln k ·\ln(n-k)} l n k ⋅ l n ( n − k ) 1 在[ 2 , n 2 ] [2,\frac{n}{2}] [ 2 , 2 n ] 上单调递减并且关于n 2 \frac{n}{2} 2 n 对称,所以
A n = ln 2 n n ( ∑ k = 2 M + ∑ k = M + 1 n − M − 1 + ∑ k = n − M n − 2 ) 1 ln k ⋅ ln ( n − k ) ⩽ ln 2 n n [ 2 ⋅ M − 1 ln 2 ⋅ ln ( n − 2 ) + n − 2 M − 1 ln M ⋅ ln ( n − M ) ] ⩽ 2 ln 2 ⋅ M ln n n + ( 1 − 2 M n ) ln n ln M + O ( 1 ln n ) \begin{aligned}
A_{n} &=\frac{\ln ^{2} n}{n}\left(\sum_{k=2}^{M}+\sum_{k=M+1}^{n-M-1}+\sum_{k=n-M}^{n-2}\right) \frac{1}{\ln k \cdot \ln (n-k)} \\
& \leqslant \frac{\ln ^{2} n}{n}\left[2 \cdot \frac{M-1}{\ln 2 \cdot \ln (n-2)}+\frac{n-2 M-1}{\ln M \cdot \ln (n-M)}\right] \\
& \leqslant \frac{2}{\ln 2} \cdot \frac{M \ln n}{n}+\left(1-\frac{2 M}{n}\right) \frac{\ln n}{\ln M}+O\left(\frac{1}{\ln n}\right)
\end{aligned} A n = n ln 2 n ( k = 2 ∑ M + k = M + 1 ∑ n − M − 1 + k = n − M ∑ n − 2 ) ln k ⋅ ln ( n − k ) 1 ⩽ n ln 2 n [ 2 ⋅ ln 2 ⋅ ln ( n − 2 ) M − 1 + ln M ⋅ ln ( n − M ) n − 2 M − 1 ] ⩽ ln 2 2 ⋅ n M ln n + ( 1 − n 2 M ) ln M ln n + O ( ln n 1 )
选取 M = [ n ln 2 n ] + 1 M=\left[\frac{n}{\ln ^{2} n}\right]+1 M = [ l n 2 n n ] + 1 , 我们得到
A n ⩽ ( 1 − 2 n ln 2 n ) ln n ln n − 2 ln ln n + O ( 1 ln n ) ⩽ 1 + O ( ln ln n ln n ) A_{n} \leqslant\left(1-\frac{2}{n \ln ^{2} n}\right) \frac{\ln n}{\ln n-2 \ln \ln n}+O\left(\frac{1}{\ln n}\right) \leqslant 1+O\left(\frac{\ln \ln n}{\ln n}\right)
A n ⩽ ( 1 − n ln 2 n 2 ) ln n − 2 ln ln n ln n + O ( ln n 1 ) ⩽ 1 + O ( ln n ln ln n )
于是
lim n → ∞ ln 2 n n ∑ k = 2 n − 2 1 ln k ⋅ ln ( n − k ) = 1. ■ \displaystyle\lim _{n \rightarrow \infty} \frac{\ln ^{2} n}{n} \sum_{k=2}^{n-2} \frac{1}{\ln k \cdot \ln (n-k)}=1.\blacksquare n → ∞ lim n ln 2 n k = 2 ∑ n − 2 ln k ⋅ ln ( n − k ) 1 = 1 . ■
2022.8.23
【题】 函数f f f 称为P-函数如果其是可微的且满足f f f : R → R \mathbb{R} \rightarrow \mathbb{R} R → R ,有连续导函数 f ′ f^{\prime} f ′ , x ∈ R x \in \mathbb{R} x ∈ R ,满足 f ( x + f ′ ( x ) ) = f ( x ) f\left(x+f^{\prime}(x)\right)=f(x) f ( x + f ′ ( x ) ) = f ( x ) , x ∈ R x \in \mathbb{R} x ∈ R .
( i ) (i) ( i ) 证明 P-函数的导数至少有一个零点.
( i i ) (ii) ( i i ) 试举出一个非常数的P-函数.
( i i i ) (iii) ( i i i ) 证明如果一个P-函数的导数有至少两个不同的零点,则其是常数函数.▶ \blacktriangleright ▶
◀ \blacktriangleleft ◀
( i ) (i) ( i ) If f f f is a P -function, and f ′ ( x ) ≠ 0 f^{\prime}(x) \neq 0 f ′ ( x ) = 0 for some x ∈ R x \in \mathbb{R} x ∈ R , the mean value theorem shows that f ′ f^{\prime} f ′ vanishes at some point ξ \xi ξ between x x x and x + f ′ ( x ) : 0 = f ( x + f ′ ( x ) ) − f ( x ) = f ′ ( x ) f ′ ( ξ ) x+f^{\prime}(x): 0=f(x+ \left.f^{\prime}(x)\right)-f(x)=f^{\prime}(x) f^{\prime}(\xi) x + f ′ ( x ) : 0 = f ( x + f ′ ( x ) ) − f ( x ) = f ′ ( x ) f ′ ( ξ )
( i i ) (ii) ( i i ) Try a nonconstant polynomial function f f f . Identification of coefficients forces f ( x ) = − x 2 + p x + q f(x)=-x^{2}+p x+q f ( x ) = − x 2 + p x + q , where p p p and q q q are two arbitrarily fixed real numbers. This is not at all accidental. As shown in the comment that follows the solution, every nonconstant P -function whose derivative vanishes at a single point is of this form.
( i i i ) (iii) ( i i i ) Let f f f be a P -function. By ( i ) (i) ( i ) , the set Z = { x : x ∈ R a n d f ′ ( x ) = 0 } Z=\left\{x: x \in \mathbb{R}\right. and \left.f^{\prime}(x)=0\right\} Z = { x : x ∈ R a n d f ′ ( x ) = 0 } has at least one element. We now show that if it has more than one element, then it must be all of R \mathbb{R} R . The conclusion will follow. The proof is broken into three steps.
STEP 1. If f ′ f^{\prime} f ′ vanishes at some point a a a , then f ′ ( x ) ≥ 0 f^{\prime}(x) \geq 0 f ′ ( x ) ≥ 0 for x ≤ a x \leq a x ≤ a , and f ′ ( x ) ≤ 0 f^{\prime}(x) \leq 0 f ′ ( x ) ≤ 0 for x ≥ a x \geq a x ≥ a . The argument is essentially the same in both cases, so we deal only with the first one. We argue by reductio ad absurdum. Suppose f ′ ( x 0 ) < 0 f^{\prime}\left(x_{0}\right)<0 f ′ ( x 0 ) < 0 for some x 0 < a x_{0}<a x 0 < a and let α = inf { x : x > x 0 a n d f ′ ( x ) = 0 } \alpha=\inf \left\{x: x>x_{0}\right. and \left.f^{\prime}(x)=0\right\} α = inf { x : x > x 0 a n d f ′ ( x ) = 0 } ; clearly, this infimum exists. By continuity of f ′ , f ′ ( α ) = 0 f^{\prime}, f^{\prime}(\alpha)=0 f ′ , f ′ ( α ) = 0 and f ′ ( x ) < 0 f^{\prime}(x)<0 f ′ ( x ) < 0 for x 0 < x < α x_{0}<x<\alpha x 0 < x < α ; in particular, f f f is strictly monotonic (decreasing) on ( x 0 , α ) \left(x_{0}, \alpha\right) ( x 0 , α ) . Consider further the continuous real-valued function g : x ↦ x + f ′ ( x ) , x ∈ R g: x \mapsto x+f^{\prime}(x), x \in \mathbb{R} g : x ↦ x + f ′ ( x ) , x ∈ R , and note that g ( x ) < x g(x)<x g ( x ) < x for x 0 < x < α x_{0}<x<\alpha x 0 < x < α , and g ( α ) = α g(\alpha)=\alpha g ( α ) = α . Since g ( α ) = α > x 0 g(\alpha)=\alpha>x_{0} g ( α ) = α > x 0 and g g g is continuous, g ( x ) > x 0 g(x)>x_{0} g ( x ) > x 0 for x x x in ( x 0 , α ) \left(x_{0}, \alpha\right) ( x 0 , α ) , sufficiently close to α \alpha α . Consequently, for any such x x x , x 0 < g ( x ) < x < α x_{0}<g(x)< x<\alpha x 0 < g ( x ) < x < α , and f ( g ( x ) ) = f ( x ) f(g(x))=f(x) f ( g ( x ) ) = f ( x ) , which contradicts the strict monotonicity of f f f on ( x , α ) (x, \alpha) ( x , α )
STEP 2. If f ′ f' f ′ vanishes at two points a a a and b b b , a < b a<b a < b , then f f f is constant on [ a , b ] [a, b] [ a , b ] . By Step 1, f ′ ( x ) ≥ 0 f^{\prime}(x) \geq 0 f ′ ( x ) ≥ 0 for x ≤ b x \leq b x ≤ b and f ′ ( x ) ≤ 0 f^{\prime}(x) \leq 0 f ′ ( x ) ≤ 0 for x ≥ a x \geq a x ≥ a , so f ′ f^{\prime} f ′ vanishes identically on [ a , b ] [a, b] [ a , b ] . Consequently, f f f is constant on [ a , b ] [a, b] [ a , b ] .
We are now in a position to conclude the proof.
STEP 3. If the set Z = { x : x ∈ R a n d f ′ ( x ) = 0 } Z=\left\{x: x \in \mathbb{R}\right. and \left.f^{\prime}(x)=0\right\} Z = { x : x ∈ R a n d f ′ ( x ) = 0 } has more than one element, then Z Z Z is all of R \mathbb{R} R . By Step 2, Z Z Z is a nondegenerate interval, and f f f is constant on Z : f ( x ) = c Z: f(x)=c Z : f ( x ) = c for all x x x in Z Z Z . We show that α = inf Z = − ∞ \alpha=\inf Z=-\infty α = inf Z = − ∞ and β = sup Z = + ∞ \beta=\sup Z=+\infty β = sup Z = + ∞ . Suppose, if possible, that α > − ∞ \alpha>-\infty α > − ∞ . Then α \alpha α is a member of Z Z Z , by continuity of f ′ f^{\prime} f ′ . Recall the function g g g from Step 1. By Step 1, f ′ ( x ) > 0 f^{\prime}(x)>0 f ′ ( x ) > 0 for x < α x<\alpha x < α , so g ( x ) > x g(x)>x g ( x ) > x , f ( x ) f(x) f ( x ) is strictly monotonic (increasing), and f ( x ) < c f(x)<c f ( x ) < c for x < α x<\alpha x < α . Since f ( x ) f(x) f ( x ) is strictly monotonic for x < α x<\alpha x < α , the conditions f ( g ( x ) ) = f ( x ) f(g(x))=f(x) f ( g ( x ) ) = f ( x ) and g ( x ) > x g(x)>x g ( x ) > x force x < α < g ( x ) x<\alpha<g(x) x < α < g ( x ) . Since g ( α ) = α < β g(\alpha)=\alpha<\beta g ( α ) = α < β , and g g g is continuous, it follows that g ( x ) < β g(x)<\beta g ( x ) < β for x < α x<\alpha x < α , sufficiently close to α \alpha α . Finally, take any such x x x and recall that Z Z Z is an interval to conclude that g ( x ) ∈ Z g(x) \in Z g ( x ) ∈ Z , so f ( x ) = f ( g ( x ) ) = c f(x)=f(g(x))=c f ( x ) = f ( g ( x ) ) = c , in contradiction to f ( x ) < c f(x)<c f ( x ) < c established above. Consequently, α = − ∞ \alpha=-\infty α = − ∞ . A similar argument shows that β = + ∞ . ■ \beta=+\infty.\blacksquare β = + ∞ . ■
The antiderivative test for series, which we now state and prove, follows from the mean value theorem and the fact that a series of positive terms converges if and only if its sequence of partial sums is bounded above.
2022.8.22
【题】设实数列( a n ) n ≥ 1 \left(a_{n}\right)_{n \geq 1} ( a n ) n ≥ 1 收敛至 0 0 0 , 函数 f : R → R f: \mathbb{R} \rightarrow \mathbb{R} f : R → R 有原函数且满足 f ( x + a n ) = f ( x ) , x ∈ R f\left(x+a_{n}\right)=f(x) , x \in \mathbb{R} f ( x + a n ) = f ( x ) , x ∈ R , n ≥ 1 n \geq 1 n ≥ 1 . 证明 f f f 是常数. ▶ .\blacktriangleright . ▶
◀ \blacktriangleleft ◀
设 F F F 为 f f f 的原函数 . 则存在常数 C C C 使得 F ( x + a n ) − F ( x ) ≡ C F\left(x+a_{n}\right)-F(x) \equiv C F ( x + a n ) − F ( x ) ≡ C .
对任意 a ∈ R a \in \mathbb{R} a ∈ R ,存在整数列 ( b n ) \left(b_{n}\right) ( b n ) 使得 lim n → ∞ a n b n = a \displaystyle\lim _{n \rightarrow \infty} a_{n} b_{n}=a n → ∞ lim a n b n = a .
如果 b n b_{n} b n 为 a / a n a / a_{n} a / a n 的整数部分 , 则a = a n b n + r n a=a_{n} b_{n}+r_{n} a = a n b n + r n , 0 ≤ r n < a n 0 \leq r_{n}<a_{n} 0 ≤ r n < a n . 由此在我们的假设中使 r n → 0 r_{n} \rightarrow 0 r n → 0 ,我们有 a n b n → a a_{n} b_{n} \rightarrow a a n b n → a .固定一实数 x 0 x_{0} x 0 . 我们有
F ( x 0 + a n b n ) − F ( x 0 ) = F ( x 0 + b n a n ) − F ( x 0 + ( b n − 1 ) a n ) + ⋯ + F ( x 0 + a n ) − F ( x 0 ) = b n [ F ( x 0 + a n ) − F ( x 0 ) ] = a n b n F ( x 0 + a n ) − F ( x 0 ) a n \begin{aligned}
F\left(x_{0}+a_{n} b_{n}\right)-F\left(x_{0}\right)=& F\left(x_{0}+b_{n} a_{n}\right)-F\left(x_{0}+\left(b_{n}-1\right) a_{n}\right)+\cdots+F\left(x_{0}+a_{n}\right) \\
&-F\left(x_{0}\right) \\
=& b_{n}\left[F\left(x_{0}+a_{n}\right)-F\left(x_{0}\right)\right] \\
=& a_{n} b_{n} \frac{F\left(x_{0}+a_{n}\right)-F\left(x_{0}\right)}{a_{n}}
\end{aligned} F ( x 0 + a n b n ) − F ( x 0 ) = = = F ( x 0 + b n a n ) − F ( x 0 + ( b n − 1 ) a n ) + ⋯ + F ( x 0 + a n ) − F ( x 0 ) b n [ F ( x 0 + a n ) − F ( x 0 ) ] a n b n a n F ( x 0 + a n ) − F ( x 0 )
由于 F F F 是可微的, 我们有 n → ∞ n \rightarrow \infty n → ∞ ,
F ( x 0 + a ) − F ( x 0 ) = a F ′ ( x 0 ) F\left(x_{0}+a\right)-F\left(x_{0}\right)=a F^{\prime}\left(x_{0}\right) F ( x 0 + a ) − F ( x 0 ) = a F ′ ( x 0 ) .
又由于 a a a 是任意的, 则对 x ∈ R x \in \mathbb{R} x ∈ R ,
F ( x ) = F ( x 0 ) + ( x − x 0 ) F ′ ( x 0 ) = [ F ( x 0 ) − x 0 F ′ ( x 0 ) ] + x F ′ ( x 0 ) F(x)=F\left(x_{0}\right)+\left(x-x_{0}\right) F^{\prime}\left(x_{0}\right)=\left[F\left(x_{0}\right)-x_{0} F^{\prime}\left(x_{0}\right)\right]+x F^{\prime}\left(x_{0}\right) F ( x ) = F ( x 0 ) + ( x − x 0 ) F ′ ( x 0 ) = [ F ( x 0 ) − x 0 F ′ ( x 0 ) ] + x F ′ ( x 0 ) ,
于是 F ( x ) = B + A x F(x)=B+A x F ( x ) = B + A x , A A A 和 B B B 均为常数. 故 f ( x ) = A = F ′ ( x 0 ) . ■ f(x)=A=F^{\prime}\left(x_{0}\right).\blacksquare f ( x ) = A = F ′ ( x 0 ) . ■
2022.8.21
【题】试求积分
∫ 1 x x 2 a + x a + 1 d x , x > 0 , a > 0. ▶ \int \frac{1}{x \sqrt{x^{2 a}+x^{a}+1}} d x, \quad x>0,a>0.\blacktriangleright ∫ x x 2 a + x a + 1 1 d x , x > 0 , a > 0 . ▶
◀ \blacktriangleleft ◀
变换积分为
∫ 1 x a + 1 1 + 1 x a + 1 x 2 a d x = ∫ 1 ( 1 x a + 1 2 ) 2 + 3 4 ⋅ 1 x a + 1 d x \int \frac{1}{x^{a+1} \sqrt{1+\frac{1}{x^{a}}+\frac{1}{x^{2 a}}}} d x=\int \frac{1}{\sqrt{\left(\frac{1}{x^{a}}+\frac{1}{2}\right)^{2}+\frac{3}{4}}} \cdot \frac{1}{x^{a+1}} d x ∫ x a + 1 1 + x a 1 + x 2 a 1 1 d x = ∫ ( x a 1 + 2 1 ) 2 + 4 3 1 ⋅ x a + 1 1 d x
换元 t = 1 / x a + 1 / 2 t=1 / x^{a}+1 / 2 t = 1 / x a + 1 / 2 则有
− 1 a ∫ 1 t 2 + 3 4 d x = − 1 a ln ( t + t 2 + 3 4 ) + C = − 1 a ln ( 1 x a + 1 2 + 1 + 1 x a + 1 x 2 a ) + C . ■ \begin{aligned}
-\frac{1}{a} \int \frac{1}{\sqrt{t^{2}+\frac{3}{4}}} d x &=-\frac{1}{a} \ln \left(t+\sqrt{t^{2}+\frac{3}{4}}\right)+C \\
&=-\frac{1}{a} \ln \left(\frac{1}{x^{a}}+\frac{1}{2}+\sqrt{1+\frac{1}{x^{a}}+\frac{1}{x^{2 a}}}\right)+C .\blacksquare
\end{aligned} − a 1 ∫ t 2 + 4 3 1 d x = − a 1 ln ( t + t 2 + 4 3 ) + C = − a 1 ln ( x a 1 + 2 1 + 1 + x a 1 + x 2 a 1 ) + C . ■
2022.8.20
【题】试证明 ∀ x ∈ ( 0 , 1 ) \forall x \in(0,1) ∀ x ∈ ( 0 , 1 ) ,2 π ( sin π x 2 ) arcsin x < x 2 < ( sin x ) arcsin x . ▶ \frac{2}{\pi}\left(\sin \frac{\pi x}{2}\right) \arcsin x<x^{2}<(\sin x) \arcsin x.\blacktriangleright π 2 ( sin 2 π x ) arcsin x < x 2 < ( sin x ) arcsin x . ▶
◀ \blacktriangleleft ◀
第一个不等式即f ( x ) f − 1 ( y ) ≤ x y f(x) f^{-1}(y) \leq x y f ( x ) f − 1 ( y ) ≤ x y 的特例,
这里 x > 0 , y ≥ f ( x ) x>0, y \geq f(x) x > 0 , y ≥ f ( x ) ,正函数f f f 满足 f ( x ) / x f(x) / x f ( x ) / x 递增.
第一个不等式只需注意到
f ( x ) x ≤ f ( z ) z , z = f − 1 ( y ) ≥ x \frac{f(x)}{x} \leq \frac{f(z)}{z} , z=f^{-1}(y) \geq x x f ( x ) ≤ z f ( z ) , z = f − 1 ( y ) ≥ x ,则不难得证。
第二个不等式即f ( x ) f − 1 ( y ) ≥ x y f(x) f^{-1}(y) \geq x y f ( x ) f − 1 ( y ) ≥ x y 的特例,
这里 x , y > 0 , y ≤ f ( x ) x, y>0, y \leq f(x) x , y > 0 , y ≤ f ( x ) , 函数 f f f 满足 f ( x ) / x f(x) / x f ( x ) / x 递增.
只需注意到f ( x ) x ≥ f ( z ) z for z = f − 1 ( y ) ≤ x \frac{f(x)}{x} \geq \frac{f(z)}{z} \quad \text { for } z=f^{-1}(y) \leq x x f ( x ) ≥ z f ( z ) for z = f − 1 ( y ) ≤ x 即可.
为了得到原题不等式, 令 f ( x ) = arcsin x , x ∈ ( 0 , 1 ) f(x)=\arcsin x , x \in(0,1) f ( x ) = arcsin x , x ∈ ( 0 , 1 ) 即可 .
下面给出其他一些例子
( e x − 1 ) ln ( 1 + x ) > x 2 for x > 0 , ( tan x ) arctan x > x 2 for x ∈ ( 0 , π / 2 ) , [ ( 1 + x ) p − 1 ] [ ( 1 + x ) 1 / p − 1 − 1 ] > x 2 for x > 0 and p > 0 , p ≠ 1 , [ ( 1 − x ) p − 1 ] [ 1 − ( 1 + x ) 1 / p ] > x 2 for x ∈ ( 0 , 1 ) and p < − 1. \begin{array}{rlr}
\left(\mathrm{e}^{x}-1\right) \ln (1+x) & >x^{2} & \text { for } x>0, \\
(\tan x) \arctan x & >x^{2} & \text { for } x \in(0, \pi / 2), \\
{\left[(1+x)^{p}-1\right]\left[(1+x)^{1 / p-1}-1\right]} & >x^{2} & \text { for } x>0 \text { and } p>0, p \neq 1, \\
{\left[(1-x)^{p}-1\right]\left[1-(1+x)^{1 / p}\right]} & >x^{2} & \text { for } x \in(0,1) \text { and } p<-1 .
\end{array} ( e x − 1 ) ln ( 1 + x ) ( tan x ) arctan x [ ( 1 + x ) p − 1 ] [ ( 1 + x ) 1 / p − 1 − 1 ] [ ( 1 − x ) p − 1 ] [ 1 − ( 1 + x ) 1 / p ] > x 2 > x 2 > x 2 > x 2 for x > 0 , for x ∈ ( 0 , π / 2 ) , for x > 0 and p > 0 , p = 1 , for x ∈ ( 0 , 1 ) and p < − 1 .
■ \blacksquare ■
2022.8.19
【题】证明数列 ( a n ) n ≥ 1 \left(a_{n}\right)_{n \geq 1} ( a n ) n ≥ 1 :a n = ( 1 + 1 n ) n + p a_{n}=\left(1+\frac{1}{n}\right)^{n+p} a n = ( 1 + n 1 ) n + p 是递减的当且仅当 p ≥ 1 / 2. ▶ p \geq 1 / 2.\blacktriangleright p ≥ 1 / 2 . ▶
◀ \blacktriangleleft ◀
∀ x ∈ ( − 1 , 1 ) \forall x \in(-1,1) ∀ x ∈ ( − 1 , 1 ) , 我们有ln 1 + x 1 − x = 2 x ( 1 + x 2 3 + x 4 5 + ⋯ ) \ln \frac{1+x}{1-x}=2 x\left(1+\frac{x^{2}}{3}+\frac{x^{4}}{5}+\cdots\right) ln 1 − x 1 + x = 2 x ( 1 + 3 x 2 + 5 x 4 + ⋯ ) .
置 x = ( 2 n + 1 ) − 1 x=(2 n+1)^{-1} x = ( 2 n + 1 ) − 1 , 则有
ln n + 1 n = 2 2 n + 1 [ 1 + 1 3 ( 2 n + 1 ) 2 + 1 5 ( 2 n + 1 ) 4 + ⋯ ] \ln \frac{n+1}{n}=\frac{2}{2 n+1}\left[1+\frac{1}{3(2 n+1)^{2}}+\frac{1}{5(2 n+1)^{4}}+\cdots\right] ln n n + 1 = 2 n + 1 2 [ 1 + 3 ( 2 n + 1 ) 2 1 + 5 ( 2 n + 1 ) 4 1 + ⋯ ] .
于是
ln a n = 2 ( n + p ) 2 n + 1 [ 1 + 1 3 ( 2 n + 1 ) 2 + 1 5 ( 2 n + 1 ) 4 + ⋯ ] = 1 + p − 1 2 n + 1 2 [ 1 + 1 3 ( 2 n + 1 ) 2 + 1 5 ( 2 n + 1 ) 4 + ⋯ ] . \begin{aligned}
\ln a_{n} &=\frac{2(n+p)}{2 n+1}\left[1+\frac{1}{3(2 n+1)^{2}}+\frac{1}{5(2 n+1)^{4}}+\cdots\right] \\
&=1+\frac{p-\frac{1}{2}}{n+\frac{1}{2}}\left[1+\frac{1}{3(2 n+1)^{2}}+\frac{1}{5(2 n+1)^{4}}+\cdots\right] .
\end{aligned} ln a n = 2 n + 1 2 ( n + p ) [ 1 + 3 ( 2 n + 1 ) 2 1 + 5 ( 2 n + 1 ) 4 1 + ⋯ ] = 1 + n + 2 1 p − 2 1 [ 1 + 3 ( 2 n + 1 ) 2 1 + 5 ( 2 n + 1 ) 4 1 + ⋯ ] .
这表明当p ≥ 1 / 2 p \geq 1 / 2 p ≥ 1 / 2 , ( a n ) n ≥ 1 \left(a_{n}\right)_{n \geq 1} ( a n ) n ≥ 1 是递减的.
此外
ln a n + 1 − ln a n = 1 2 − p ( n + 1 2 ) ( n + 3 2 ) + O ( n − 3 ) , n → ∞ . \ln a_{n+1}-\ln a_{n}=\frac{\frac{1}{2}-p}{\left(n+\frac{1}{2}\right)\left(n+\frac{3}{2}\right)}+O\left(n^{-3}\right) , n \rightarrow \infty . ln a n + 1 − ln a n = ( n + 2 1 ) ( n + 2 3 ) 2 1 − p + O ( n − 3 ) , n → ∞ .
于是p < 1 / 2 p<1 / 2 p < 1 / 2 ,且n n n 充分大时, a n a_{n} a n 是递增的 . ■ .\blacksquare . ■
2022.8.18
【题】比大小:tan ( sin x ) \tan (\sin x) tan ( sin x ) 和 sin ( tan x ) \sin (\tan x) sin ( tan x ) ,x ∈ ( 0 , π / 2 ) . ▶ x \in(0, \pi / 2).\blacktriangleright x ∈ ( 0 , π / 2 ) . ▶
◀ \blacktriangleleft ◀
设 f ( x ) = tan ( sin x ) − sin ( tan x ) f(x)=\tan (\sin x)-\sin (\tan x) f ( x ) = tan ( sin x ) − sin ( tan x ) . 则有
f ′ ( x ) = cos x cos 2 ( sin x ) − cos ( tan x ) cos 2 x = cos 3 x − cos ( tan x ) ⋅ cos 2 ( sin x ) cos 2 x ⋅ cos 2 ( tan x ) . \begin{aligned}
f^{\prime}(x) &=\frac{\cos x}{\cos ^{2}(\sin x)}-\frac{\cos (\tan x)}{\cos ^{2} x} \\
&=\frac{\cos ^{3} x-\cos (\tan x) \cdot \cos ^{2}(\sin x)}{\cos ^{2} x \cdot \cos ^{2}(\tan x)} .
\end{aligned} f ′ ( x ) = cos 2 ( sin x ) cos x − cos 2 x cos ( tan x ) = cos 2 x ⋅ cos 2 ( tan x ) cos 3 x − cos ( tan x ) ⋅ cos 2 ( sin x ) .
对于 0 < x < arctan π 2 0<x<\arctan \frac{\pi}{2} 0 < x < arctan 2 π ,由cos x \cos x cos x 在 ( 0 , π 2 ) \left(0, \frac{\pi}{2}\right) ( 0 , 2 π ) 的凹凸性知
cos ( tan x ) ⋅ cos 2 ( sin x ) 3 < 1 3 [ cos ( tan x ) + 2 cos ( sin x ) ] ≤ cos [ tan x + 2 sin x 3 ] < cos x \begin{aligned}
\sqrt[3]{\cos (\tan x) \cdot \cos ^{2}(\sin x)} &<\frac{1}{3}[\cos (\tan x)+2 \cos (\sin x)] \\
& \leq \cos \left[\frac{\tan x+2 \sin x}{3}\right]<\cos x
\end{aligned} 3 cos ( tan x ) ⋅ cos 2 ( sin x ) < 3 1 [ cos ( tan x ) + 2 cos ( sin x ) ] ≤ cos [ 3 tan x + 2 sin x ] < cos x
其中最后一个不等号是因为
[ tan x + 2 sin x 3 ] ′ = 1 3 [ 1 cos 2 x + 2 cos x ] ≥ 1 cos 2 x ⋅ cos x ⋅ cos x 3 = 1 \left[\frac{\tan x+2 \sin x}{3}\right]^{\prime}=\frac{1}{3}\left[\frac{1}{\cos ^{2} x}+2 \cos x\right] \geq \sqrt[3]{\frac{1}{\cos ^{2} x} \cdot \cos x \cdot \cos x}=1 [ 3 t a n x + 2 s i n x ] ′ = 3 1 [ c o s 2 x 1 + 2 cos x ] ≥ 3 c o s 2 x 1 ⋅ cos x ⋅ cos x = 1
于是 cos 3 x − cos ( tan x ) ⋅ cos 2 ( sin x ) > 0 \cos ^{3} x-\cos (\tan x) \cdot \cos ^{2}(\sin x)>0 cos 3 x − cos ( tan x ) ⋅ cos 2 ( sin x ) > 0 , 即 f ′ ( x ) > 0 f^{\prime}(x)>0 f ′ ( x ) > 0 .
因此,f f f 在 [ 0 , arctan π / 2 ] [0, \arctan \pi / 2] [ 0 , arctan π / 2 ] 是递增的.
最后注意到
tan [ sin ( arctan π 2 ) ] = tan π / 2 1 + π 2 / 4 > tan π 4 = 1 \tan \left[\sin \left(\arctan \frac{\pi}{2}\right)\right]=\tan \frac{\pi / 2}{\sqrt{1+\pi^{2} / 4}}>\tan \frac{\pi}{4}=1 tan [ sin ( arctan 2 π ) ] = tan 1 + π 2 / 4 π / 2 > tan 4 π = 1
这表明如果 x ∈ [ arctan π 2 , π 2 ] x \in \left[\arctan \frac{\pi}{2}, \frac{\pi}{2}\right] x ∈ [ arctan 2 π , 2 π ] 则 tan ( sin x ) > 1 ≥ sin ( tan x ) \tan (\sin x)>1\geq\sin(\tan x) tan ( sin x ) > 1 ≥ sin ( tan x ) ,即 f ( x ) > 0. ■ f(x)>0.\blacksquare f ( x ) > 0 . ■
2022.8.17
【题】( K o l m o g o r o v ′ s I n e q u a l i t y ) \mathbf{(Kolmogorov's Inequality)} ( K o l m o g o r o v ′ s I n e q u a l i t y ) .
设f : R → R f: \mathbb{R} \rightarrow \mathbb{R} f : R → R 为 C 3 C^{3} C 3 . 且 f f f 和 f ′ ′ ′ f^{\prime \prime \prime} f ′ ′ ′ 都有界.
设M 0 = sup x ∈ R ∣ f ( x ) ∣ , M 3 = sup x ∈ R ∣ f ′ ′ ′ ( x ) ∣ M_{0}=\displaystyle\sup _{x \in \mathbb{R}}|f(x)|, \quad M_{3}=\sup _{x \in \mathbb{R}}\left|f^{\prime \prime \prime}(x)\right| M 0 = x ∈ R sup ∣ f ( x ) ∣ , M 3 = x ∈ R sup ∣ f ′ ′ ′ ( x ) ∣ .
( a ) (a) ( a ) 证明 f ′ f^{\prime} f ′ 有界,且
sup x ∈ R ∣ f ′ ( x ) ∣ ≤ 1 2 ( 9 M 0 2 M 3 ) 1 / 3 \displaystyle\sup _{x \in \mathbb{R}}\left|f^{\prime}(x)\right| \leq \frac{1}{2}\left(9 M_{0}^{2} M_{3}\right)^{1 / 3} x ∈ R sup ∣ f ′ ( x ) ∣ ≤ 2 1 ( 9 M 0 2 M 3 ) 1 / 3 .
( b ) (b) ( b ) f ′ ′ f^{\prime \prime} f ′ ′ 是否也有界?▶ \blacktriangleright ▶
( a ) (a) ( a ) 固定 x ∈ R x \in \mathbb{R} x ∈ R , h ≠ 0 h \neq 0 h = 0 .
由泰勒公式,
∣ f ( x + h ) − f ( x ) − h f ′ ( x ) − h 2 2 f ′ ′ ( x ) ∣ ≤ M 3 h 3 6 \left|f(x+h)-f(x)-h f^{\prime}(x)-\frac{h^{2}}{2} f^{\prime \prime}(x)\right| \leq M_{3} \frac{h^{3}}{6} ∣ ∣ ∣ ∣ f ( x + h ) − f ( x ) − h f ′ ( x ) − 2 h 2 f ′ ′ ( x ) ∣ ∣ ∣ ∣ ≤ M 3 6 h 3 ,
∣ f ( x − h ) − f ( x ) + h f ′ ( x ) − h 2 2 f ′ ′ ( x ) ∣ ≤ M 3 h 3 6 . \left|f(x-h)-f(x)+h f^{\prime}(x)-\frac{h^{2}}{2} f^{\prime \prime}(x)\right| \leq M_{3} \frac{h^{3}}{6} . ∣ ∣ ∣ ∣ f ( x − h ) − f ( x ) + h f ′ ( x ) − 2 h 2 f ′ ′ ( x ) ∣ ∣ ∣ ∣ ≤ M 3 6 h 3 .
因此
2 h ∣ f ′ ( x ) ∣ = ∣ ( f ( x − h ) − f ( x ) + h f ′ ( x ) − h 2 2 f ′ ′ ( x ) ) − ( f ( x + h ) − f ( x ) − h f ′ ( x ) − h 2 2 f ′ ′ ( x ) ) + f ( x + h ) − f ( x − h ) ∣ ≤ ∣ f ( x − h ) − f ( x ) + h f ′ ( x ) − h 2 2 f ′ ′ ( x ) ∣ + ∣ f ( x + h ) − f ( x ) − h f ′ ( x ) − h 2 2 f ′ ′ ( x ) ∣ + ∣ f ( x + h ) ∣ + ∣ f ( x − h ) ∣ = M 3 h 3 3 + 2 M 0 . \begin{aligned}
2 h\left|f^{\prime}(x)\right|=& \mid\left(f(x-h)-f(x)+h f^{\prime}(x)-\frac{h^{2}}{2} f^{\prime \prime}(x)\right) \\
&-\left(f(x+h)-f(x)-h f^{\prime}(x)-\frac{h^{2}}{2} f^{\prime \prime}(x)\right)+f(x+h)-f(x-h) \mid \\
\leq &\left|f(x-h)-f(x)+h f^{\prime}(x)-\frac{h^{2}}{2} f^{\prime \prime}(x)\right| \\
&+\left|f(x+h)-f(x)-h f^{\prime}(x)-\frac{h^{2}}{2} f^{\prime \prime}(x)\right|+|f(x+h)|+|f(x-h)| \\
=& \frac{M_{3} h^{3}}{3}+2 M_{0} .
\end{aligned} 2 h ∣ f ′ ( x ) ∣ = ≤ = ∣ ( f ( x − h ) − f ( x ) + h f ′ ( x ) − 2 h 2 f ′ ′ ( x ) ) − ( f ( x + h ) − f ( x ) − h f ′ ( x ) − 2 h 2 f ′ ′ ( x ) ) + f ( x + h ) − f ( x − h ) ∣ ∣ ∣ ∣ ∣ ∣ f ( x − h ) − f ( x ) + h f ′ ( x ) − 2 h 2 f ′ ′ ( x ) ∣ ∣ ∣ ∣ ∣ + ∣ ∣ ∣ ∣ ∣ f ( x + h ) − f ( x ) − h f ′ ( x ) − 2 h 2 f ′ ′ ( x ) ∣ ∣ ∣ ∣ ∣ + ∣ f ( x + h ) ∣ + ∣ f ( x − h ) ∣ 3 M 3 h 3 + 2 M 0 .
故
∣ f ′ ( x ) ∣ ≤ M 0 h + M 3 h 2 6 = : ψ ( h ) . \left|f^{\prime}(x)\right| \leq \frac{M_{0}}{h}+\frac{M_{3} h^{2}}{6}=: \psi(h) . ∣ f ′ ( x ) ∣ ≤ h M 0 + 6 M 3 h 2 = : ψ ( h ) .
注意到ψ ′ ( h ) = − M 0 h 2 + M 3 h 3 \psi^{\prime}(h)=-\frac{M_{0}}{h^{2}}+\frac{M_{3} h}{3} ψ ′ ( h ) = − h 2 M 0 + 3 M 3 h ,
故有最小值时 h 0 = ( 3 M 0 M 3 − 1 ) 1 / 3 h_{0}=\left(3 M_{0} M_{3}^{-1}\right)^{1 / 3} h 0 = ( 3 M 0 M 3 − 1 ) 1 / 3 .
此时ψ ( h ) = 2 − 1 ( 9 M 0 2 M 3 ) 1 / 3 \psi(h)=2^{-1}\left(9 M_{0}^{2} M_{3}\right)^{1 / 3} ψ ( h ) = 2 − 1 ( 9 M 0 2 M 3 ) 1 / 3 , 结论成立。
( b ) (b) ( b ) 由假设和命题 ( a ) (a) ( a ) , f ′ f^{\prime} f ′ , f ′ ′ ′ = ( f ′ ) ′ ′ f^{\prime \prime \prime}=\left(f^{\prime}\right)^{\prime \prime} f ′ ′ ′ = ( f ′ ) ′ ′ 均有界.
由 L a n d a u ′ s i n e q u a l i t y \mathbf{Landau's inequality} L a n d a u ′ s i n e q u a l i t y ,我们可以推断出 f ′ ′ f^{\prime \prime} f ′ ′ 是有界的。■ \blacksquare ■
2022.8.16
【题】给定整数 n ≥ 1 n \geq 1 n ≥ 1 .
( i ) (i) ( i ) 试证明
x n + x n − 1 + ⋯ + x − 1 = 0 x^{n}+x^{n-1}+\cdots+x-1=0 x n + x n − 1 + ⋯ + x − 1 = 0 ,有一正根.设其为 a n a_{n} a n .
且证明 a n ≤ 1 a_{n} \leq 1 a n ≤ 1
( i i ) (ii) ( i i ) 证明 ( a n ) n ≥ 1 \left(a_{n}\right)_{n \geq 1} ( a n ) n ≥ 1 递减.
( i i i ) (iii) ( i i i ) 证明a n n + 1 − 2 a n + 1 = 0 a_{n}^{n+1}-2 a_{n}+1=0 a n n + 1 − 2 a n + 1 = 0 ,且 lim n → ∞ a n = 1 / 2 \displaystyle\lim _{n \rightarrow \infty} a_{n}=1 / 2 n → ∞ lim a n = 1 / 2 .
( i v ) (iv) ( i v ) 试证明a n = 1 2 + 1 4 ⋅ 2 n + o ( 1 2 n ) , n → ∞ . ▶ a_{n}=\frac{1}{2}+\frac{1}{4 \cdot 2^{n}}+o\left(\frac{1}{2^{n}}\right) ,n \rightarrow \infty .\blacktriangleright a n = 2 1 + 4 ⋅ 2 n 1 + o ( 2 n 1 ) , n → ∞ . ▶
◀ \blacktriangleleft ◀
( i ) (i) ( i ) 设 f n ( x ) = x n + x n − 1 + ⋯ + x − 1 f_{n}(x)=x^{n}+x^{n-1}+\cdots+x-1 f n ( x ) = x n + x n − 1 + ⋯ + x − 1 .则 f n f_{n} f n 是连续的, f n ( 0 ) = − 1 f_{n}(0)=-1 f n ( 0 ) = − 1 , f n ( 1 ) = n − 1 ≥ 0 f_{n}(1)=n-1 \geq 0 f n ( 1 ) = n − 1 ≥ 0 .
由介值性知, 存在 a n ∈ ( 0 , 1 ] a_{n} \in (0,1] a n ∈ ( 0 , 1 ] 使得 f n ( a n ) = 0 f_{n}\left(a_{n}\right)=0 f n ( a n ) = 0 . 由于 f n f_{n} f n 在 [ 0 , ∞ ) [0, \infty) [ 0 , ∞ ) 上严格递增 ,故只有唯一解 a n a_{n} a n .
( i i ) (ii) ( i i ) 我们有 f n ( a n + 1 ) = − a n + 1 n + 1 < 0 f_{n}\left(a_{n+1}\right)=-a_{n+1}^{n+1}<0 f n ( a n + 1 ) = − a n + 1 n + 1 < 0 .
由于 f n f_{n} f n 是递增的 ,且 0 = f n ( a n ) > f n ( a n + 1 ) 0=f_{n}\left(a_{n}\right)>f_{n}\left(a_{n+1}\right) 0 = f n ( a n ) > f n ( a n + 1 ) , 故 a n > a n + 1 a_{n}>a_{n+1} a n > a n + 1 .
( i i i ) (iii) ( i i i ) 注意到
( x − 1 ) ( x n + x n − 1 + ⋯ + x − 1 ) = x n + 1 − 2 x + 1 (x-1)\left(x^{n}+x^{n-1}+\cdots+x-1\right)=x^{n+1}-2 x+1 ( x − 1 ) ( x n + x n − 1 + ⋯ + x − 1 ) = x n + 1 − 2 x + 1 .
即 a n n + 1 − 2 a n + 1 = 0 a_{n}^{n+1}-2 a_{n}+1=0 a n n + 1 − 2 a n + 1 = 0 .
于是
0 < a n − 1 2 = a n n + 1 2 < a 2 n + 1 2 → 0 , n → ∞ . 0<a_{n}-\frac{1}{2}=\frac{a_{n}^{n+1}}{2}<\frac{a_{2}^{n+1}}{2} \rightarrow 0 , n \rightarrow \infty. 0 < a n − 2 1 = 2 a n n + 1 < 2 a 2 n + 1 → 0 , n → ∞ .
故 lim n → ∞ a n = 1 / 2 \displaystyle\lim _{n \rightarrow \infty} a_{n}=1 / 2 n → ∞ lim a n = 1 / 2 .
( i v ) (iv) ( i v ) 设 b n = a n − 1 / 2 b_{n}=a_{n}-1 / 2 b n = a n − 1 / 2 . 则 ln ( 2 b n ) = ( n + 1 ) ln a n \ln \left(2 b_{n}\right)=(n+1) \ln a_{n} ln ( 2 b n ) = ( n + 1 ) ln a n . 又 ln a n = − ln 2 + ln ( 1 + 2 b n ) \ln a_{n}=-\ln 2+\ln \left(1+2 b_{n}\right) ln a n = − ln 2 + ln ( 1 + 2 b n ) ,且 ln ( 1 + 2 b n ) ∼ 2 b n = o ( 1 / n ) \ln \left(1+2 b_{n}\right) \sim 2 b_{n}=o(1 / n) ln ( 1 + 2 b n ) ∼ 2 b n = o ( 1 / n ) .
因此
ln ( 2 b n ) = − ( n + 1 ) ln 2 + o ( 1 ) , n → ∞ , a n = 1 2 + 1 4 ⋅ 2 n + o ( 1 2 n ) , n → ∞ . . ■ \begin{array}{l}
\ln \left(2 b_{n}\right)=-(n+1) \ln 2+o(1) , n \rightarrow \infty, \\
a_{n}=\frac{1}{2}+\frac{1}{4 \cdot 2^{n}}+o\left(\frac{1}{2^{n}}\right) ,n \rightarrow \infty .
\end{array}.\blacksquare ln ( 2 b n ) = − ( n + 1 ) ln 2 + o ( 1 ) , n → ∞ , a n = 2 1 + 4 ⋅ 2 n 1 + o ( 2 n 1 ) , n → ∞ . . ■
2022.8.15
【题】 设 f , g : R → R f, g: \mathbb{R} \rightarrow \mathbb{R} f , g : R → R 周期分别为 a a a , b b b . 且 lim x → 0 f ( x ) / x = u ∈ R \displaystyle\lim _{x \rightarrow 0} f(x) / x=u \in \mathbb{R} x → 0 lim f ( x ) / x = u ∈ R , lim x → 0 g ( x ) / x = v ∈ R \ { 0 } \displaystyle\lim _{x \rightarrow 0} g(x) / x=v \in \mathbb{R} \backslash\{0\} x → 0 lim g ( x ) / x = v ∈ R \ { 0 } .
试求
lim n → ∞ f ( ( 3 + 7 ) n a ) g ( ( 2 + 2 ) n b ) . ▶ \displaystyle\lim _{n \rightarrow \infty} \frac{f\left((3+\sqrt{7})^{n} a\right)}{g\left((2+\sqrt{2})^{n} b\right)}.\blacktriangleright n → ∞ lim g ( ( 2 + 2 ) n b ) f ( ( 3 + 7 ) n a ) . ▶
◀ \blacktriangleleft ◀
我们有
f ( ( 3 + 7 ) n a ) g ( ( 2 + 2 ) n b ) = f ( ( 3 + 7 ) n a + ( 3 − 7 ) n a − ( 3 − 7 ) n a ) g ( ( 2 + 2 ) n b + ( 2 − 2 ) n b − ( 2 − 2 ) n b ) . \frac{f\left((3+\sqrt{7})^{n} a\right)}{g\left((2+\sqrt{2})^{n} b\right)}=\frac{f\left((3+\sqrt{7})^{n} a+(3-\sqrt{7})^{n} a-(3-\sqrt{7})^{n} a\right)}{g\left((2+\sqrt{2})^{n} b+(2-\sqrt{2})^{n} b-(2-\sqrt{2})^{n} b\right)} . g ( ( 2 + 2 ) n b ) f ( ( 3 + 7 ) n a ) = g ( ( 2 + 2 ) n b + ( 2 − 2 ) n b − ( 2 − 2 ) n b ) f ( ( 3 + 7 ) n a + ( 3 − 7 ) n a − ( 3 − 7 ) n a ) .
注意到
( 3 + 7 ) n + ( 3 − 7 ) n ∈ Z (3+\sqrt{7})^{n}+(3-\sqrt{7})^{n} \in \mathbb{Z} ( 3 + 7 ) n + ( 3 − 7 ) n ∈ Z , ( 2 + 2 ) n + ( 2 − 2 ) n ∈ Z (2+\sqrt{2})^{n}+(2-\sqrt{2})^{n} \in \mathbb{Z} ( 2 + 2 ) n + ( 2 − 2 ) n ∈ Z .
从而
f ( ( 3 + 7 ) n a ) g ( ( 2 + 2 ) n b ) = f ( − ( 3 − 7 ) n a ) g ( − ( 2 − 2 ) n b ) , ∀ n ≥ 1. \frac{f\left((3+\sqrt{7})^{n} a\right)}{g\left((2+\sqrt{2})^{n} b\right)}=\frac{f\left(-(3-\sqrt{7})^{n} a\right)}{g\left(-(2-\sqrt{2})^{n} b\right)}, \quad \forall n \geq 1 . g ( ( 2 + 2 ) n b ) f ( ( 3 + 7 ) n a ) = g ( − ( 2 − 2 ) n b ) f ( − ( 3 − 7 ) n a ) , ∀ n ≥ 1 .
于是
lim n → ∞ f ( ( 3 + 7 ) n a ) g ( ( 2 + 2 ) n b ) = a b ⋅ lim n → ∞ { f ( − ( 3 − 7 ) n a ) − ( 3 − 7 ) n a ⋅ − ( 2 − 2 ) n b g ( − ( 2 − 2 ) n b ) ⋅ ( 3 − 7 ) n ( 2 − 2 ) n } . \begin{aligned}
\lim _{n \rightarrow \infty} & \frac{f\left((3+\sqrt{7})^{n} a\right)}{g\left((2+\sqrt{2})^{n} b\right)} \\
&=\frac{a}{b} \cdot \lim _{n \rightarrow \infty}\left\{\frac{f\left(-(3-\sqrt{7})^{n} a\right)}{-(3-\sqrt{7})^{n} a} \cdot \frac{-(2-\sqrt{2})^{n} b}{g\left(-(2-\sqrt{2})^{n} b\right)} \cdot \frac{(3-\sqrt{7})^{n}}{(2-\sqrt{2})^{n}}\right\} .
\end{aligned} n → ∞ lim g ( ( 2 + 2 ) n b ) f ( ( 3 + 7 ) n a ) = b a ⋅ n → ∞ lim { − ( 3 − 7 ) n a f ( − ( 3 − 7 ) n a ) ⋅ g ( − ( 2 − 2 ) n b ) − ( 2 − 2 ) n b ⋅ ( 2 − 2 ) n ( 3 − 7 ) n } .
即得所求极限为 0 0 0 . ■ .\blacksquare . ■
2022.8.14
【题】设实数列( a n ) n ≥ 1 \left(a_{n}\right)_{n \geq 1} ( a n ) n ≥ 1 满足 ( a n + a n − 1 ) n ≥ 1 \left(a_{n}+a_{n}^{-1}\right)_{n \geq 1} ( a n + a n − 1 ) n ≥ 1 是收敛的.
试证明( a n ) n ≥ 1 \left(a_{n}\right)_{n \geq 1} ( a n ) n ≥ 1 是收敛的.▶ \blacktriangleright ▶
◀ \blacktriangleleft ◀
置 a = lim inf n → ∞ a n a=\displaystyle\liminf _{n \rightarrow \infty} a_{n} a = n → ∞ l i m i n f a n , A = lim sup n → ∞ a n A=\displaystyle\limsup _{n \rightarrow \infty} a_{n} A = n → ∞ l i m s u p a n .
则a a a 和 A A A 都存在且有限.
若 A = + ∞ A=+\infty A = + ∞ 的话 , 我们得到矛盾 a n + a n − 1 > a n a_{n}+a_{n}^{-1}>a_{n} a n + a n − 1 > a n , 而 ( a n + a n − 1 ) n ≥ 1 \left(a_{n}+a_{n}^{-1}\right)_{n \geq 1} ( a n + a n − 1 ) n ≥ 1 是有界的.
假定A > a A>a A > a . 取子列 ( a n k ) k ≥ 1 \left(a_{n_{k}}\right)_{k \geq 1} ( a n k ) k ≥ 1 and ( a m k ) k ≥ 1 \left(a_{m_{k}}\right)_{k \geq 1} ( a m k ) k ≥ 1 满足 a n k → A a_{n_{k}} \rightarrow A a n k → A ,a m k → a a_{m_{k}} \rightarrow a a m k → a , k → ∞ k \rightarrow \infty k → ∞ .
于是 a n k + 1 / a n k → A + 1 / A a_{n_{k}}+1 / a_{n_{k}} \rightarrow A+ 1 / A a n k + 1 / a n k → A + 1 / A , a m k + 1 / a m k → a + 1 / a a_{m_{k}}+1 / a_{m_{k}} \rightarrow a+1 / a a m k + 1 / a m k → a + 1 / a .
但是 ( a n + a n − 1 ) n ≥ 1 \left(a_{n}+a_{n}^{-1}\right)_{n \geq 1} ( a n + a n − 1 ) n ≥ 1 收敛至 ℓ \ell ℓ . 有
ℓ = A + 1 A = a + 1 a \ell=A+\frac{1}{A}=a+\frac{1}{a} ℓ = A + A 1 = a + a 1 ,矛盾.
故只有A = a . ■ A=a.\blacksquare A = a . ■
2022.8.13
【题】设实数列( x n ) n ≥ 1 \left(x_{n}\right)_{n \geq 1} ( x n ) n ≥ 1 满足 lim n → ∞ ( x 2 n + x 2 n + 1 ) = 315 \displaystyle\lim _{n \rightarrow \infty}\left(x_{2 n}+x_{2 n+1}\right)= 315 n → ∞ lim ( x 2 n + x 2 n + 1 ) = 3 1 5 且 lim n → ∞ ( x 2 n + x 2 n − 1 ) = 2003. \displaystyle\lim _{n \rightarrow \infty}\left(x_{2 n}+x_{2 n-1}\right)=2003 . n → ∞ lim ( x 2 n + x 2 n − 1 ) = 2 0 0 3 .
试求 lim n → ∞ ( x 2 n / x 2 n + 1 ) . ▶ \displaystyle\lim _{n \rightarrow \infty}\left(x_{2 n} / x_{2 n+1}\right) .\blacktriangleright n → ∞ lim ( x 2 n / x 2 n + 1 ) . ▶
◀ \blacktriangleleft ◀
设 a n = x 2 n a_{n}=x_{2 n} a n = x 2 n , b n = x 2 n + 1 b_{n}=x_{2 n+1} b n = x 2 n + 1
注意到
a n + 1 − a n b n + 1 − b n = ( x 2 n + 2 + x 2 n + 1 ) − ( x 2 n + 1 + x 2 n ) ( x 2 n + 3 + x 2 n + 2 ) − ( x 2 n + 2 + x 2 n + 1 ) ⟶ 2003 − 315 315 − 2003 = − 1 , n → ∞ \frac{a_{n+1}-a_{n}}{b_{n+1}-b_{n}}=\frac{\left(x_{2 n+2}+x_{2 n+1}\right)-\left(x_{2 n+1}+x_{2 n}\right)}{\left(x_{2 n+3}+x_{2 n+2}\right)-\left(x_{2 n+2}+x_{2 n+1}\right)} \longrightarrow \frac{2003-315}{315-2003}=-1,n\to\infty b n + 1 − b n a n + 1 − a n = ( x 2 n + 3 + x 2 n + 2 ) − ( x 2 n + 2 + x 2 n + 1 ) ( x 2 n + 2 + x 2 n + 1 ) − ( x 2 n + 1 + x 2 n ) ⟶ 3 1 5 − 2 0 0 3 2 0 0 3 − 3 1 5 = − 1 , n → ∞
因此, 据 S t o l z 定理 \mathbf{Stolz}定理 S t o l z 定 理 , 该极限为 − 1 -1 − 1 . ■ .\blacksquare . ■
2022.8.12
【题】试证明( p ≥ 0 ) (p\geq0) ( p ≥ 0 )
lim n → ∞ ( 1 1 p ⋅ 2 2 p ⋯ n n p ) 1 / n p + 1 n 1 / ( p + 1 ) = e − 1 / ( p + 1 ) 2 . ▶ \displaystyle\lim _{n \rightarrow \infty} \frac{\left(1^{1^{p}} \cdot 2^{2^{p}} \cdots n^{n^{p}}\right)^{1 / n^{p+1}}}{n^{1 /(p+1)}}=\mathrm{e}^{-1 /(p+1)^{2}}.\blacktriangleright n → ∞ lim n 1 / ( p + 1 ) ( 1 1 p ⋅ 2 2 p ⋯ n n p ) 1 / n p + 1 = e − 1 / ( p + 1 ) 2 . ▶
◀ \blacktriangleleft ◀
提示:对f ( x ) = x p + 1 ln x p + 1 − x p + 1 ( p + 1 ) 2 在 f(x)=\frac{x^{p+1}\ln x}{p+1}-\frac{x^{p+1}}{(p+1)^2}在 f ( x ) = p + 1 x p + 1 l n x − ( p + 1 ) 2 x p + 1 在 [ k , k + 1 ] , 1 ≤ k ≤ n [k,k+1],1\leq k\leq n [ k , k + 1 ] , 1 ≤ k ≤ n 上用中值定理。
拓展:试考虑其差分极限值。
2022.8.11
【题】试求出下式最小值:
∫ 0 1 x 2 ( f ′ ( x ) ) 2 d x ∫ 0 1 x 2 ( f ( x ) ) 2 d x \frac{\int_{0}^{1} x^{2}\left(f^{\prime}(x)\right)^{2} d x}{\int_{0}^{1} x^{2}(f(x))^{2} d x} ∫ 0 1 x 2 ( f ( x ) ) 2 d x ∫ 0 1 x 2 ( f ′ ( x ) ) 2 d x
其中f f f 为非零连续可导函数 f : [ 0 , 1 ] → R f:[0,1] \rightarrow \mathbb{R} f : [ 0 , 1 ] → R 且 f ( 1 ) = 0. ▶ f(1)=0.\blacktriangleright f ( 1 ) = 0 . ▶
◀ \blacktriangleleft ◀ Answer . ■ .\blacksquare . ■
2022.8.10
【题】
设 0 < x 0 < π , x n = 1 n ∑ k = 0 n − 1 sin ( x k ) 0<x_{0}<\pi , x_{n}=\displaystyle\frac{1}{n} \sum_{k=0}^{n-1} \sin \left(x_{k}\right) 0 < x 0 < π , x n = n 1 k = 0 ∑ n − 1 sin ( x k ) .
试求
lim n → ∞ x n ln ( n ) . ▶ \displaystyle\lim _{n \rightarrow \infty} x_{n} \sqrt{\ln (n)}.\blacktriangleright n → ∞ lim x n ln ( n ) . ▶
◀ \blacktriangleleft ◀ Answer . ■ .\blacksquare . ■
2022.8.9
【题】试求
∑ k = 1 ∞ ( − 1 ) ⌊ k + k + 1 ⌋ k ( k + 1 ) . ▶ \displaystyle\sum_{k=1}^{\infty} \frac{(-1)^{\lfloor\sqrt{k}+\sqrt{k+1}\rfloor}}{k(k+1)}.\blacktriangleright k = 1 ∑ ∞ k ( k + 1 ) ( − 1 ) ⌊ k + k + 1 ⌋ . ▶
◀ \blacktriangleleft ◀ Answer . ■ .\blacksquare . ■
2022.8.8
【题】设函数f : Z + → R + f: \mathbb{Z}^{+} \to \mathbb{R}^{+} f : Z + → R + 满足 lim n → ∞ f ( n ) / n = a , a > 0. \displaystyle\lim _{n \rightarrow \infty} f(n) / n=a, a>0 . n → ∞ lim f ( n ) / n = a , a > 0 .
试求
lim n → ∞ ( ∏ k = 1 n + 1 f ( k ) n + 1 − ∏ k = 1 n f ( k ) n ) . ▶ \displaystyle\lim _{n \rightarrow \infty}\left(\sqrt[n+1]{\prod_{k=1}^{n+1} f(k)}-\sqrt[n]{\prod_{k=1}^{n} f(k)}\right).\blacktriangleright n → ∞ lim ⎝ ⎛ n + 1 k = 1 ∏ n + 1 f ( k ) − n k = 1 ∏ n f ( k ) ⎠ ⎞ . ▶
◀ \blacktriangleleft ◀ Answer . ■ .\blacksquare . ■
2022.8.7
【题】试求
∑ k = 1 ∞ ( 1 + 1 2 + ⋯ + 1 k − log ( k ) − γ − 1 2 k + 1 12 k 2 ) \displaystyle\sum_{k=1}^{\infty}\left(1+\frac{1}{2}+\cdots+\frac{1}{k}-\log (k)-\gamma-\frac{1}{2 k}+\frac{1}{12 k^{2}}\right) k = 1 ∑ ∞ ( 1 + 2 1 + ⋯ + k 1 − log ( k ) − γ − 2 k 1 + 1 2 k 2 1 )
其中 γ \gamma γ 为欧拉常数.▶ \blacktriangleright ▶
◀ \blacktriangleleft ◀ Answer . ■ .\blacksquare . ■
2022.8.6
【题】置L = lim n → ∞ ∫ 0 1 x n + ( 1 − x ) n n d x L=\displaystyle\lim _{n \rightarrow \infty} \int_{0}^{1} \sqrt[n]{x^{n}+(1-x)^{n}} d x L = n → ∞ lim ∫ 0 1 n x n + ( 1 − x ) n d x .
( 1 ) (1) ( 1 ) 试求出 L L L .
( 2 ) (2) ( 2 ) 试求 lim n → ∞ n 2 ( ∫ 0 1 x n + ( 1 − x ) n n d x − L ) . ▶ \displaystyle\lim _{n \rightarrow \infty} n^{2}\left(\int_{0}^{1} \sqrt[n]{x^{n}+(1-x)^{n}} d x-L\right).\blacktriangleright n → ∞ lim n 2 ( ∫ 0 1 n x n + ( 1 − x ) n d x − L ) . ▶
◀ \blacktriangleleft ◀ Answer . ■ .\blacksquare . ■
2022.8.5
【题】设二阶可导函数f : [ 0 , 1 ] → R f:[0,1] \to \mathbb{R} f : [ 0 , 1 ] → R , f ′ ′ f'' f ′ ′ 在[ 0 , 1 ] [0,1] [ 0 , 1 ] 上连续且∫ 1 / 3 2 / 3 f ( x ) d x = 0 \int_{1 / 3}^{2 / 3} f(x) d x=0 ∫ 1 / 3 2 / 3 f ( x ) d x = 0 .
试证明:
4860 ( ∫ 0 1 f ( x ) d x ) 2 ≤ 11 ∫ 0 1 ( f ′ ′ ( x ) ) 2 d x . ▶ 4860\left(\int_{0}^{1} f(x) d x\right)^{2} \leq 11 \int_{0}^{1}\left(f^{\prime \prime}(x)\right)^{2} d x.\blacktriangleright 4 8 6 0 ( ∫ 0 1 f ( x ) d x ) 2 ≤ 1 1 ∫ 0 1 ( f ′ ′ ( x ) ) 2 d x . ▶
◀ \blacktriangleleft ◀ Answer . ■ .\blacksquare . ■
2022.8.4
【题】证明存在可微函数 f : R → R f: \mathbb{R} \to \mathbb{R} f : R → R 满足
2 cos ( x + f ( x ) ) − cos ( x ) = 1 , ∀ x ∈ R . 2 \cos (x+f(x))-\cos (x)=1 ,\forall x\in \mathbb{R}. 2 cos ( x + f ( x ) ) − cos ( x ) = 1 , ∀ x ∈ R . 且 f ( π / 2 ) = − π / 6. ▶ f(\pi / 2)=-\pi / 6.\blacktriangleright f ( π / 2 ) = − π / 6 . ▶
◀ \blacktriangleleft ◀ Answer . ■ .\blacksquare . ■
2022.8.3
【题】是否存在数列 { a n } \{a_{n}\} { a n } 使得 ∑ n = 1 ∞ 1 / a n \displaystyle\sum_{n=1}^{\infty} 1/a_{n} n = 1 ∑ ∞ 1 / a n 收敛, 且
∏ k = 1 n a k < n n , ∀ n ≥ 1. ▶ \displaystyle\prod_{k=1}^{n} a_{k}<n^{n} ,\forall n\geq1.\blacktriangleright k = 1 ∏ n a k < n n , ∀ n ≥ 1 . ▶
◀ \blacktriangleleft ◀ Answer . ■ .\blacksquare . ■
2022.8.2
【题】设 C n C_{n} C n 为第n个Catalan数, 即 C n = 1 n + 1 ( 2 n n ) C_{n}=\frac{1}{n+1}\left(\begin{array}{c}2 n \\ n\end{array}\right) C n = n + 1 1 ( 2 n n ) .
试证明:
(1) ∑ n = 0 ∞ 2 n C n = 5 + 3 π 2 \displaystyle\sum_{n=0}^{\infty} \frac{2^{n}}{C_{n}}=5+\frac{3 \pi}{2} n = 0 ∑ ∞ C n 2 n = 5 + 2 3 π
(2) ∑ n = 0 ∞ 3 n C n = 22 + 8 3 π . ▶ \displaystyle\sum_{n=0}^{\infty} \frac{3^{n}}{C_{n}}=22+8 \sqrt{3} \pi. \blacktriangleright n = 0 ∑ ∞ C n 3 n = 2 2 + 8 3 π . ▶
◀ \blacktriangleleft ◀ Answer . ■ .\blacksquare . ■
2022.8.1
【题】试求极限:
lim n → ∞ ( 2 n − 1 ) ! ! n ( tan ( π ( n + 1 ) ! n + 1 4 n ! n ) − 1 ) . ▶ \displaystyle\lim _{n \rightarrow \infty} \sqrt[n]{(2 n-1) ! !}\left(\tan \left(\frac{\pi \sqrt[n+1]{(n+1) !}}{4 \sqrt[n]{n !}}\right)-1\right).\blacktriangleright n → ∞ lim n ( 2 n − 1 ) ! ! ( tan ( 4 n n ! π n + 1 ( n + 1 ) ! ) − 1 ) . ▶
◀ \blacktriangleleft ◀ Answer . ■ .\blacksquare . ■
2022.7
2022.7.31
【题】给定实数列:a n + 1 = exp ( − ∑ k = 0 n a k ) a_{n+1}=\exp \left(-\displaystyle\sum_{k=0}^{n} a_{k}\right) a n + 1 = exp ( − k = 0 ∑ n a k ) , n ≥ 0 n \geq 0 n ≥ 0 . 初值a 0 > 0 a_0>0 a 0 > 0
试求b b b 值使得∑ n = 0 ∞ ( a n ) b \displaystyle\sum_{n=0}^{\infty}\left(a_{n}\right)^{b} n = 0 ∑ ∞ ( a n ) b 收敛.▶ \blacktriangleright ▶
◀ \blacktriangleleft ◀ Answer . ■ .\blacksquare . ■
2022.7.30
【题】试求:
∑ n = 1 ∞ 4 n sin 4 ( 2 − n θ ) . ▶ \displaystyle\sum_{n=1}^{\infty} 4^{n} \sin ^{4}\left(2^{-n} \theta\right).\blacktriangleright n = 1 ∑ ∞ 4 n sin 4 ( 2 − n θ ) . ▶
◀ \blacktriangleleft ◀ Answer . ■ .\blacksquare . ■
2022.7.29
【题】试证明:
∏ n = 2 ∞ ( ( n 2 − 1 n 2 ) 2 ( n 2 − 1 ) ( n + 1 n − 1 ) n ) = π . ▶ \displaystyle\prod_{n=2}^{\infty}\left(\left(\frac{n^{2}-1}{n^{2}}\right)^{2\left(n^{2}-1\right)}\left(\frac{n+1}{n-1}\right)^{n}\right)=\pi.\blacktriangleright n = 2 ∏ ∞ ⎝ ⎛ ( n 2 n 2 − 1 ) 2 ( n 2 − 1 ) ( n − 1 n + 1 ) n ⎠ ⎞ = π . ▶
◀ \blacktriangleleft ◀ Answer . ■ .\blacksquare . ■
2022.7.28
【题】试求:lim n → ∞ 1 n ∑ k = 1 n { n k } 2 \displaystyle\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n}\left\{\frac{n}{k}\right\}^{2} n → ∞ lim n 1 k = 1 ∑ n { k n } 2 ,其中 { x } \{x\} { x } 为取小数部分.▶ \blacktriangleright ▶
◀ \blacktriangleleft ◀ Answer . ■ .\blacksquare . ■
2022.7.27
【题】定义 R k ( n ) R_{k}(n) R k ( n ) :
R k ( n ) = 2 − 2 + 2 + 2 + ⋯ + 2 + n ⏞ k square roots R_{k}(n)=\overbrace{\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2+\cdots+\sqrt{2+\sqrt{n}}}}}}}^{k \text { square roots }} R k ( n ) = 2 − 2 + 2 + 2 + ⋯ + 2 + n k square roots
试证明lim k → ∞ R k ( 2 ) / R k ( 3 ) = 3 / 2. ▶ \displaystyle\lim _{k \rightarrow \infty} R_{k}(2) / R_{k}(3)=3 / 2.\blacktriangleright k → ∞ lim R k ( 2 ) / R k ( 3 ) = 3 / 2 . ▶
◀ \blacktriangleleft ◀ Answer . ■ .\blacksquare . ■
2022.7.26
【题】置数列{ a n , n ≥ 1 } \left\{a_{n}, n \geq 1\right\} { a n , n ≥ 1 } : [ ( n + 1 ) a n ] = [ n a n + 1 ] , n ≥ 1 \left[(n+1) a_{n}\right]=\left[n a_{n+1}\right], n \geq 1 [ ( n + 1 ) a n ] = [ n a n + 1 ] , n ≥ 1 (其中 [ x ] [x] [ x ] 为取整).
试证明存在 c ∈ R c \in \mathbb{R} c ∈ R 使得对于每个n ≥ 1 n \geq 1 n ≥ 1 , ∣ a n − c n ∣ < 1. ▶ \left|a_{n}-c n\right|<1.\blacktriangleright ∣ a n − c n ∣ < 1 . ▶
◀ \blacktriangleleft ◀ 置 b n = a n n , n ≥ 1 b_{n}=\frac{a_{n}}{n}, n \geq 1 b n = n a n , n ≥ 1 . 得
[ n ( n + 1 ) b n ] = [ n ( n + 1 ) b n + 1 ] , n ≥ 1 \left[n(n+1) b_{n}\right]=\left[n(n+1) b_{n+1}\right], n \geq 1 [ n ( n + 1 ) b n ] = [ n ( n + 1 ) b n + 1 ] , n ≥ 1 .
于是 ∣ n ( n + 1 ) b n − n ( n + 1 ) b n + 1 ∣ < 1 , i . e . , ∣ b n − b n + 1 ∣ < 1 n ( n + 1 ) , n ≥ 1 \left|n(n+1) b_{n}-n(n+1) b_{n+1}\right|<1 , i.e., \left|b_{n}-b_{n+1}\right|<\frac{1}{n(n+1)}, n \geq 1 ∣ n ( n + 1 ) b n − n ( n + 1 ) b n + 1 ∣ < 1 , i . e . , ∣ b n − b n + 1 ∣ < n ( n + 1 ) 1 , n ≥ 1 .
故 ∀ n ≥ 1 , p ≥ 1 \forall n \geq 1, p \geq 1 ∀ n ≥ 1 , p ≥ 1 , 有
∣ b n + p − b n ∣ ≤ ∣ b n + 1 − b n ∣ + … + ∣ b n + p − b n + p − 1 ∣ < 1 n ( n + 1 ) + … + 1 ( n + p − 1 ) ( n + p ) = 1 n − 1 n + p < 1 n → 0 , as n → ∞ . \begin{aligned}
\left|b_{n+p}-b_{n}\right| & \leq\left|b_{n+1}-b_{n}\right|+\ldots+\left|b_{n+p}-b_{n+p-1}\right| \\
\quad & <\frac{1}{n(n+1)}+\ldots+\frac{1}{(n+p-1)(n+p)}=\frac{1}{n}-\frac{1}{n+p}<\frac{1}{n} \rightarrow 0, \text { as } n \rightarrow \infty .
\end{aligned} ∣ b n + p − b n ∣ ≤ ∣ b n + 1 − b n ∣ + … + ∣ b n + p − b n + p − 1 ∣ < n ( n + 1 ) 1 + … + ( n + p − 1 ) ( n + p ) 1 = n 1 − n + p 1 < n 1 → 0 , as n → ∞ .
因此{ b n } \left\{b_{n}\right\} { b n } 收敛. 记c = lim n → ∞ b n c=\displaystyle\lim _{n \rightarrow \infty} b_{n} c = n → ∞ lim b n .
∀ ≥ 1 \forall \geq 1 ∀ ≥ 1 , 我们有 ∣ b n − c ∣ = lim p → ∞ ∣ b n + p − b n ∣ ≤ 1 n \left|b_{n}-c\right|=\displaystyle\lim _{p \rightarrow \infty}\left|b_{n+p}-b_{n}\right| \leq \frac{1}{n} ∣ b n − c ∣ = p → ∞ lim ∣ b n + p − b n ∣ ≤ n 1 .
因此
∣ b n − c ∣ ≤ ∣ b n − b n + 1 ∣ + ∣ b n + 1 − c ∣ < 1 n ( n + 1 ) + 1 n + 1 = 1 n \left|b_{n}-c\right| \leq\left|b_{n}-b_{n+1}\right|+\left|b_{n+1}-c\right|<\frac{1}{n(n+1)}+\frac{1}{n+1}=\frac{1}{n} ∣ b n − c ∣ ≤ ∣ b n − b n + 1 ∣ + ∣ b n + 1 − c ∣ < n ( n + 1 ) 1 + n + 1 1 = n 1 .
即 ∣ a n n − c ∣ < 1 n , i . e . , ∣ a n − c n ∣ < 1 , n ≥ 1. ■ \left|\frac{a_{n}}{n}-c\right|<\frac{1}{n} , i.e., \left|a_{n}-c n\right|<1, n \geq 1.\blacksquare ∣ ∣ ∣ n a n − c ∣ ∣ ∣ < n 1 , i . e . , ∣ a n − c n ∣ < 1 , n ≥ 1 . ■
2022.7.25
【题】判断下列积分的敛散性:
∫ 0 ∞ sin x x + ln x d x . ▶ \int_{0}^{\infty} \frac{\sin x }{x+\ln x}\,\mathrm{d}x. \blacktriangleright ∫ 0 ∞ x + l n x s i n x d x . ▶
◀ \blacktriangleleft ◀ 本题要注意的是瑕点的隐蔽性.
置 f ( x ) = x + ln x , x ∈ ( 0 , 1 ] f(x)=x+\ln x, x \in(0,1] f ( x ) = x + ln x , x ∈ ( 0 , 1 ] . 因 lim x → 0 + f ( x ) = − ∞ \displaystyle\lim _{x \rightarrow 0+} f(x)= -\infty x → 0 + lim f ( x ) = − ∞ 及 f ( 1 ) = 1 f(1)=1 f ( 1 ) = 1 , 由介值性知 ∃ a ∈ ( 0 , 1 ) , s . t . f ( a ) = 0 \exists a \in(0,1), s.t. f(a)=0 ∃ a ∈ ( 0 , 1 ) , s . t . f ( a ) = 0 . 显然 sin a ≠ 0 \sin a \neq 0 sin a = 0 , f ′ ( a ) = 1 + 1 a ≠ 0 f^{\prime}(a)=1+\frac{1}{a} \neq 0 f ′ ( a ) = 1 + a 1 = 0 , 因此 sin x x + ln x ∼ sin a ( x − a ) f ′ ( a ) \frac{\sin x}{x+\ln x} \sim \frac{\sin a}{(x-a) f^{\prime}(a)} x + l n x s i n x ∼ ( x − a ) f ′ ( a ) s i n a , x → a x \rightarrow a x → a , 又由∫ a 1 d x x − a \int_{a}^{1} \frac{d x}{x-a} ∫ a 1 x − a d x 是发散的,故原积分亦是发散的. ■ .\blacksquare . ■
2022.7.24
【题】证明不等式:
2 3 4 … n n 4 3 < 2 , n ≥ 2. ▶ \sqrt{2 \sqrt[3]{3 \sqrt[4]{4 \ldots \sqrt[n]{n}}}}<2, n \geq 2. \blacktriangleright 2 3 3 4 4 … n n < 2 , n ≥ 2 . ▶
◀ \blacktriangleleft ◀ 等价于
∑ k = 2 n 1 k ! ln k < ln 2 , n ≥ 2 \displaystyle\sum_{k=2}^{n} \frac{1}{k !} \ln k<\ln 2, n \geq 2 k = 2 ∑ n k ! 1 ln k < ln 2 , n ≥ 2 .
由 J e n s e n ′ s i n e q u a l i t y \mathbf{Jensen's \ \ inequality} J e n s e n ′ s i n e q u a l i t y 我们有
∑ k = 2 n 1 k ! ln k ≤ ∑ k = 2 n 1 k ! ⋅ ln ∑ k = 2 n 1 k ! ⋅ k ∑ k = 2 n 1 k ! = ∑ k = 2 n 1 k ! ln ( ∑ k = 1 n − 1 1 k ! ∑ k = 2 n 1 k ! ) \displaystyle\sum_{k=2}^{n} \frac{1}{k !} \ln k \leq \sum_{k=2}^{n} \frac{1}{k !} \cdot \ln \frac{\sum_{k=2}^{n} \frac{1}{k !} \cdot k}{\sum_{k=2}^{n} \frac{1}{k !}}=\sum_{k=2}^{n} \frac{1}{k !} \ln \left(\frac{\sum_{k=1}^{n-1} \frac{1}{k !}}{\sum_{k=2}^{n} \frac{1}{k !}}\right) k = 2 ∑ n k ! 1 ln k ≤ k = 2 ∑ n k ! 1 ⋅ ln ∑ k = 2 n k ! 1 ∑ k = 2 n k ! 1 ⋅ k = k = 2 ∑ n k ! 1 ln ( ∑ k = 2 n k ! 1 ∑ k = 1 n − 1 k ! 1 ) .
注意 ∑ k = 2 n 1 k ! ln k \sum_{k=2}^{n} \frac{1}{k !} \ln k ∑ k = 2 n k ! 1 ln k 是严增的, 从而得到
∑ k = 2 n 1 k ! ln k < ∑ k = 2 ∞ 1 k ! ln k ≤ lim n → ∞ ∑ k = 2 n 1 k ! ln ( ∑ k = 1 n − 1 1 k ! ∑ k = 2 n 1 k ! ) = ∑ k = 2 ∞ 1 k ! ln ( ∑ k = 1 ∞ 1 k ! ∑ k = 2 ∞ 1 k ! ) = ( e − 2 ) ln e − 1 e − 2 = ( e − 2 ) ln ( 1 + 1 e − 2 ) \begin{aligned}
\sum_{k=2}^{n} \frac{1}{k !} \ln k &<\sum_{k=2}^{\infty} \frac{1}{k !} \ln k \\
& \leq \lim _{n \rightarrow \infty} \sum_{k=2}^{n} \frac{1}{k !} \ln \left(\frac{\sum_{k=1}^{n-1} \frac{1}{k !}}{\sum_{k=2}^{n} \frac{1}{k !}}\right)=\sum_{k=2}^{\infty} \frac{1}{k !} \ln \left(\frac{\sum_{k=1}^{\infty} \frac{1}{k !}}{\sum_{k=2}^{\infty} \frac{1}{k !}}\right)\\
&=(e-2) \ln \frac{e-1}{e-2}=(e-2) \ln \left(1+\frac{1}{e-2}\right)
\end{aligned} k = 2 ∑ n k ! 1 ln k < k = 2 ∑ ∞ k ! 1 ln k ≤ n → ∞ lim k = 2 ∑ n k ! 1 ln ( ∑ k = 2 n k ! 1 ∑ k = 1 n − 1 k ! 1 ) = k = 2 ∑ ∞ k ! 1 ln ( ∑ k = 2 ∞ k ! 1 ∑ k = 1 ∞ k ! 1 ) = ( e − 2 ) ln e − 2 e − 1 = ( e − 2 ) ln ( 1 + e − 2 1 )
即转证
( e − 2 ) ln ( 1 + 1 e − 2 ) < ln 2 , ( 1 + 1 e − 2 ) e − 2 < 2 (e-2) \ln \left(1+\frac{1}{e-2}\right)<\ln 2,\left(1+\frac{1}{e-2}\right)^{e-2}<2 ( e − 2 ) ln ( 1 + e − 2 1 ) < ln 2 , ( 1 + e − 2 1 ) e − 2 < 2
对 a > − 1 a>-1 a > − 1 ,y ( x ) = ( 1 + a ) x y(x)=(1+a)^{x} y ( x ) = ( 1 + a ) x 在R \mathbb{R} R 上是凹的 , 因此对 x ∈ ( 0 , 1 ) x \in(0,1) x ∈ ( 0 , 1 ) 它在 y = 1 + a x y=1+a x y = 1 + a x 之下 , 即 ( 1 + a ) x < 1 + a x , 0 < x < 1 (1+a)^{x}<1+a x, 0<x<1 ( 1 + a ) x < 1 + a x , 0 < x < 1 .
故
( 1 + 1 e − 2 ) e − 2 < 1 + e − 2 e − 2 = 2. ■ \left(1+\frac{1}{e-2}\right)^{e-2}<1+\frac{e-2}{e-2}=2 .\blacksquare ( 1 + e − 2 1 ) e − 2 < 1 + e − 2 e − 2 = 2 . ■
2022.7.23
【题】试证明:∀ k ∈ N , a k = ∑ j = 1 ∞ j k j ! ∉ Q . ▶ \forall k\in\mathbb{N},a_k=\displaystyle\sum_{j=1}^{\infty}\frac{j^{k}}{j!}\notin \mathbb{Q}.\blacktriangleright ∀ k ∈ N , a k = j = 1 ∑ ∞ j ! j k ∈ / Q . ▶
◀ \blacktriangleleft ◀ 考虑证明 a k e \frac{a_k}{e} e a k 是整数.
首先已有 a 1 = e a_{1}=e a 1 = e . 假定 a k = e ⋅ b k , k ≤ n a_{k}=e \cdot b_{k}, k \leq n a k = e ⋅ b k , k ≤ n , 其中 b k b_{k} b k 是某整数 .
于是
a n + 1 = ∑ j = 1 ∞ j n + 1 j ! = ∑ j = 1 ∞ j n ( j − 1 ) ! = ∑ j = 0 ∞ ( j + 1 ) n j ! = ∑ j = 1 ∞ ∑ m = 0 n ( n m ) j m j ! = ∑ m = 0 n ( n m ) ⋅ ∑ j = 0 ∞ j m j ! = e + ∑ m = 1 n ( n m ) ⋅ ∑ j = 1 ∞ j m j m = e + ∑ m = 1 n ( n m ) a m = e ( 1 + ∑ m = 1 n ( n m ) b m ) \begin{aligned}
a_{n+1} &=\sum_{j=1}^{\infty} \frac{j^{n+1}}{j !}=\sum_{j=1}^{\infty} \frac{j^{n}}{(j-1) !}=\sum_{j=0}^{\infty} \frac{(j+1)^{n}}{j !}\\
&=\sum_{j=1}^{\infty} \sum_{m=0}^{n}\left(\begin{array}{l}
n \\
m
\end{array}\right) \frac{j^{m}}{j !}=\sum_{m=0}^{n}\left(\begin{array}{c}
n \\
m
\end{array}\right) \cdot \sum_{j=0}^{\infty} \frac{j^{m}}{j !}=e+\sum_{m=1}^{n}\left(\begin{array}{c}
n \\
m
\end{array}\right) \cdot \sum_{j=1}^{\infty} \frac{j^{m}}{j^{m}}\\
&=e+\sum_{m=1}^{n}\left(\begin{array}{l}
n \\
m
\end{array}\right) a_{m}=e\left(1+\sum_{m=1}^{n}\left(\begin{array}{c}
n \\
m
\end{array}\right) b_{m}\right)
\end{aligned} a n + 1 = j = 1 ∑ ∞ j ! j n + 1 = j = 1 ∑ ∞ ( j − 1 ) ! j n = j = 0 ∑ ∞ j ! ( j + 1 ) n = j = 1 ∑ ∞ m = 0 ∑ n ( n m ) j ! j m = m = 0 ∑ n ( n m ) ⋅ j = 0 ∑ ∞ j ! j m = e + m = 1 ∑ n ( n m ) ⋅ j = 1 ∑ ∞ j m j m = e + m = 1 ∑ n ( n m ) a m = e ( 1 + m = 1 ∑ n ( n m ) b m )
所以 a n + 1 e \frac{a_{n+1}}{e} e a n + 1 是整数,因此a k ∉ Q , k ≥ 1. ■ a_{k} \notin \mathbb{Q}, k \geq 1 .\blacksquare a k ∈ / Q , k ≥ 1 . ■
2022.7.22
【题】定义数列{ x n } , n ≥ 1 \{x_n\},n\geq1 { x n } , n ≥ 1 :x 1 = a , x n + 1 = x n 3 − 3 x n . x_1=a,x_{n+1}=x_n^3-3x_n. x 1 = a , x n + 1 = x n 3 − 3 x n .
试找出所有实数a a a 使得数列收敛.▶ \blacktriangleright ▶
◀ \blacktriangleleft ◀ 置 f ( x ) = x 3 − 3 x f(x)=x^{3}-3 x f ( x ) = x 3 − 3 x . 假定数列收敛至 ℓ \ell ℓ . 则 f ( ℓ ) = ℓ f(\ell)=\ell f ( ℓ ) = ℓ .
因此, ℓ ∈ { 0 , ± 2 } \ell \in\{0, \pm 2\} ℓ ∈ { 0 , ± 2 } . 注意到在不动点ℓ \ell ℓ 邻域均有 ∣ f ′ ( x ) ∣ > 1 \left|f^{\prime}(x)\right|>1 ∣ f ′ ( x ) ∣ > 1 .
∃ N ∈ N \exists N \in \mathbb{N} ∃ N ∈ N ,∀ n ≥ N \forall n \geq N ∀ n ≥ N , 对于在这个邻域的 x n x_{n} x n , 如果 x n ≠ ℓ x_{n} \neq \ell x n = ℓ 根据中值定理我们有
∣ x n + 1 − ℓ ∣ = ∣ f ( x n ) − f ( ℓ ) ∣ = ∣ f ′ ( θ ) ∣ ⋅ ∣ x n − ℓ ∣ > ∣ x n − ℓ ∣ \left|x_{n+1}-\ell\right|=\left|f\left(x_{n}\right)-f(\ell)\right|=\left|f^{\prime}(\theta)\right| \cdot\left|x_{n}-\ell\right|>\left|x_{n}-\ell\right| ∣ x n + 1 − ℓ ∣ = ∣ f ( x n ) − f ( ℓ ) ∣ = ∣ f ′ ( θ ) ∣ ⋅ ∣ x n − ℓ ∣ > ∣ x n − ℓ ∣ .
因此数列收敛当且仅当对于某些 n n n , x n = ℓ x_{n}=\ell x n = ℓ .
如果 ∣ a ∣ > 2 |a|>2 ∣ a ∣ > 2 那么不难证明 ∣ x n + 1 ∣ > ∣ x n ∣ > 2 , n ≥ 1 \left|x_{n+1}\right|>\left|x_{n}\right|>2, n \geq 1 ∣ x n + 1 ∣ > ∣ x n ∣ > 2 , n ≥ 1 ,故舍.
因此, ∣ a ∣ ≤ 2 |a| \leq 2 ∣ a ∣ ≤ 2 . 我们置 x 1 = a = 2 cos φ x_{1}=a=2 \cos \varphi x 1 = a = 2 cos φ , 可得 x n = 2 cos 3 n − 1 φ , n ≥ 1 x_{n}=2 \cos 3^{n-1} \varphi, n \geq 1 x n = 2 cos 3 n − 1 φ , n ≥ 1 .
即解方程 2 cos 3 n − 1 φ = ℓ 2 \cos 3^{n-1} \varphi=\ell 2 cos 3 n − 1 φ = ℓ , 其中 ℓ = 0 , ± 2 \ell=0 , \pm 2 ℓ = 0 , ± 2 .
最终得到解 a = 2 cos π k 2 ⋅ 3 n − 1 , k , n ∈ N . ■ a=2 \cos \frac{\pi k}{2 \cdot 3^{n-1}}, k, n \in \mathbb{N}. \blacksquare a = 2 cos 2 ⋅ 3 n − 1 π k , k , n ∈ N . ■
2022.7.21
【题】试求极限:lim n → ∞ ( ∫ 0 1 e x 2 n d x ) n . ▶ \displaystyle\lim_{n\to \infty}\left(\int_0^1e^{\frac{x^2}{n}}\,\mathrm{d}x\right)^n.\blacktriangleright n → ∞ lim ( ∫ 0 1 e n x 2 d x ) n . ▶
◀ \blacktriangleleft ◀ 不难证明 n → ∞ , ∫ 0 1 e x 2 n d x ∼ 1 + 1 3 n + O ( 1 n 2 ) n\to\infty,\int_0^1e^{\frac{x^2}{n}}\,\mathrm{d}x\sim1+\frac{1}{3n}+\mathcal{O}\left(\frac{1}{n^2}\right) n → ∞ , ∫ 0 1 e n x 2 d x ∼ 1 + 3 n 1 + O ( n 2 1 )
由此可得lim n → ∞ ( ∫ 0 1 e x 2 n d x ) n = e 1 3 . ■ \displaystyle\lim_{n\to \infty}\left(\int_0^1e^{\frac{x^2}{n}}\,\mathrm{d}x\right)^n=e^{\frac{1}{3}}.\blacksquare n → ∞ lim ( ∫ 0 1 e n x 2 d x ) n = e 3 1 . ■
2022.7.20
【题】求满足以下条件的所有连续函数 f : R → R : f: \mathbb{R} \rightarrow \mathbb{R}: f : R → R : 对所有 x ∈ R , ( f ∘ f ∘ f ) ( x ) = x . ▶ x \in \mathbb{R} , (f \circ f \circ f)(x)=x.\blacktriangleright x ∈ R , ( f ∘ f ∘ f ) ( x ) = x . ▶
◀ \blacktriangleleft ◀ 若f ( x 1 ) = f ( x 2 ) f\left(x_{1}\right)=f\left(x_{2}\right) f ( x 1 ) = f ( x 2 ) , 则 x 1 = f ( f ( f ( x 1 ) ) ) = f ( f ( f ( x 2 ) ) ) = x 2 x_{1}=f\left(f\left(f\left(x_{1}\right)\right)\right)=f\left(f\left(f\left(x_{2}\right)\right)\right)=x_{2} x 1 = f ( f ( f ( x 1 ) ) ) = f ( f ( f ( x 2 ) ) ) = x 2 , 这证明了 f f f 是一对一的.
因此 f f f 是连续双射函数, 从而一定是严格单调的.
若 f f f 递减, 则 f ∘ f f \circ f f ∘ f 递增, f ∘ f ∘ f f \circ f \circ f f ∘ f ∘ f 递减, 与题设矛盾. 因此 f f f 严格递增.
固定 x x x , 比较 f ( x ) f(x) f ( x ) 与 x x x . 有 3 3 3 种可能性.
首先可能有 f ( x ) > x f(x)>x f ( x ) > x . 单调性蕴涵 f ( f ( x ) ) > f ( x ) > x f(f(x))>f(x)>x f ( f ( x ) ) > f ( x ) > x , 然而 x = f ( f ( f ( x ) ) ) > f ( f ( x ) ) > f ( x ) > x x=f(f(f(x)))> f(f(x))>f(x)>x x = f ( f ( f ( x ) ) ) > f ( f ( x ) ) > f ( x ) > x , 矛盾.
还可能有 f ( x ) < x f(x)<x f ( x ) < x , 这蕴涵 f ( f ( x ) ) < f ( x ) < x f(f(x))< f(x)<x f ( f ( x ) ) < f ( x ) < x , x = f ( f ( f ( x ) ) ) < f ( f ( x ) ) < f ( x ) < x x=f(f(f(x)))<f(f(x))<f(x)<x x = f ( f ( f ( x ) ) ) < f ( f ( x ) ) < f ( x ) < x , 这也不可能.
因此 f ( x ) = x f(x)=x f ( x ) = x . 因 x x x 是任意的, 故这证明了函数方程的唯一解是恒等函数 f ( x ) = x . ■ f(x)=x. \blacksquare f ( x ) = x . ■
2022.7.19
【题】证明:
∫ − ∞ ∞ e − x 2 cos a x d x = π e − a 2 / 4 , a > 0. ▶ \int_{-\infty}^{\infty} \mathrm{e}^{-x^{2}} \cos a x \mathrm{~d} x=\sqrt{\pi} \mathrm{e}^{-a^{2} / 4},a>0.\blacktriangleright ∫ − ∞ ∞ e − x 2 cos a x d x = π e − a 2 / 4 , a > 0 . ▶
◀ \blacktriangleleft ◀ 由
cos a x = 1 − ( a x ) 2 2 ! + ( a x ) 4 4 ! − ( a x ) 6 6 ! + ⋯ \cos a x=1-\frac{(a x)^{2}}{2 !}+\frac{(a x)^{4}}{4 !}-\frac{(a x)^{6}}{6 !}+\cdots cos a x = 1 − 2 ! ( a x ) 2 + 4 ! ( a x ) 4 − 6 ! ( a x ) 6 + ⋯ ,
置∫ − ∞ ∞ e − x 2 x 2 n d x = I n \int_{-\infty}^{\infty} \mathrm{e}^{-x^{2}} x^{2 n} \mathrm{~d} x=I_{n} ∫ − ∞ ∞ e − x 2 x 2 n d x = I n .
则用分部积分法得出递推公式 I n = 2 n − 1 2 I n − 1 I_{n}=\frac{2 n-1}{2} I_{n-1} I n = 2 2 n − 1 I n − 1 .
又I 0 = ∫ − ∞ ∞ e − x 2 d x = π I_{0}=\int_{-\infty}^{\infty} \mathrm{e}^{-x^{2}} \mathrm{~d} x=\sqrt{\pi} I 0 = ∫ − ∞ ∞ e − x 2 d x = π
得
I n = ( 2 n ) ! π 4 n n ! I_{n}=\frac{(2 n) ! \sqrt{\pi}}{4^{n} n !} I n = 4 n n ! ( 2 n ) ! π
可见所要求的积分等于
∑ n = 0 ∞ ( − 1 ) n a 2 n ( 2 n ) ! ⋅ ( 2 n ) ! π 4 n n ! = π ∑ n = 0 ∞ ( − a 2 4 ) n n ! = π e − a 2 / 4 \displaystyle\sum_{n=0}^{\infty}(-1)^{n} \frac{a^{2 n}}{(2 n) !} \cdot \frac{(2 n) ! \sqrt{\pi}}{4^{n} n !}=\sqrt{\pi} \sum_{n=0}^{\infty} \frac{\left(-\frac{a^{2}}{4}\right)^{n}}{n !}=\sqrt{\pi} \mathrm{e}^{-a^{2} / 4} n = 0 ∑ ∞ ( − 1 ) n ( 2 n ) ! a 2 n ⋅ 4 n n ! ( 2 n ) ! π = π n = 0 ∑ ∞ n ! ( − 4 a 2 ) n = π e − a 2 / 4 .
还需要说明一件事: 为何允许先展开然后求积分的和? 这是因为由各项绝对值积分组成的级数本身收敛:
∑ n = 1 ∞ a 2 n ( 2 n ) ! ∫ − ∞ ∞ e − x 2 x 2 n = π ∑ 1 ∞ ( a 2 4 ) n n ! = π e a 2 / 4 < ∞ . ■ \displaystyle\sum_{n=1}^{\infty} \frac{a^{2 n}}{(2 n) !} \int_{-\infty}^{\infty} \mathrm{e}^{-x^{2}} x^{2 n}=\sqrt{\pi} \sum_{1}^{\infty} \frac{\left(\frac{a^{2}}{4}\right)^{n}}{n !}=\sqrt{\pi} \mathrm{e}^{a^{2 / 4}}<\infty. \blacksquare n = 1 ∑ ∞ ( 2 n ) ! a 2 n ∫ − ∞ ∞ e − x 2 x 2 n = π 1 ∑ ∞ n ! ( 4 a 2 ) n = π e a 2 / 4 < ∞ . ■
2022.7.18
【题】求满足下式的连续函数 f : [ 0 , 1 ] → R f:[0,1] \rightarrow \mathbb{R} f : [ 0 , 1 ] → R :
∫ 0 1 f ( x ) ( x − f ( x ) ) d x = 1 12 \int_{0}^{1} f(x)(x-f(x)) \mathrm{d} x=\frac{1}{12} ∫ 0 1 f ( x ) ( x − f ( x ) ) d x = 1 2 1 . ▶ \blacktriangleright ▶
◀ \blacktriangleleft ◀ 将题目中的关系式改写为
∫ 0 1 ( x f ( x ) − f 2 ( x ) ) d x = ∫ 0 1 x 2 4 d x \int_{0}^{1}\left(x f(x)-f^{2}(x)\right) \mathrm{d} x=\int_{0}^{1} \frac{x^{2}}{4} \mathrm{~d} x ∫ 0 1 ( x f ( x ) − f 2 ( x ) ) d x = ∫ 0 1 4 x 2 d x
移项得
∫ 0 1 ( f 2 ( x ) − x f ( x ) + x 2 4 ) d x = 0 \int_{0}^{1}\left(f^{2}(x)-x f(x)+\frac{x^{2}}{4}\right) \mathrm{d} x=0 ∫ 0 1 ( f 2 ( x ) − x f ( x ) + 4 x 2 ) d x = 0
配方得
∫ 0 1 ( f ( x ) − x 2 ) 2 d x = 0 \int_{0}^{1}\left(f(x)-\frac{x}{2}\right)^{2} \mathrm{~d} x=0 ∫ 0 1 ( f ( x ) − 2 x ) 2 d x = 0
因非负连续函数 ( f ( x ) − x 2 ) 2 \left(f(x)-\frac{x}{2}\right)^{2} ( f ( x ) − 2 x ) 2 是严格正的, 除了函数恒等于 0 0 0 . 可见满足题目条件的唯一函数是 f ( x ) = x 2 , x ∈ [ 0 , 1 ] . ■ f(x)=\frac{x}{2}, x \in[0,1] . \blacksquare f ( x ) = 2 x , x ∈ [ 0 , 1 ] . ■
2022.7.17
【题】试证明下列方程的实解只有两个: 4 x + 6 x 2 = 5 x + 5 x 2 4^{x}+6^{x^2}=5^x+5^{x^2} 4 x + 6 x 2 = 5 x + 5 x 2 . ▶ \blacktriangleright ▶
◀ \blacktriangleleft ◀ 首先注意到x = 1 , x = 0 x=1,x=0 x = 1 , x = 0 是方程的两个解,下面证明没有第三个解。
考虑函数f ( t ) = t x 2 + ( 10 − t ) x f(t)=t^{x^2}+(10-t)^x f ( t ) = t x 2 + ( 1 0 − t ) x . 由题设得f ( 5 ) = f ( 6 ) f(5)=f(6) f ( 5 ) = f ( 6 ) . 根据R o l l e \mathbf{Rolle} R o l l e 定理,∃ c ∈ ( 5 , 6 ) , s . t . f ′ ( c ) = 0 \exists c\in (5,6),s.t.f'(c)=0 ∃ c ∈ ( 5 , 6 ) , s . t . f ′ ( c ) = 0
即x c x 2 − 1 = ( 10 − c ) x − 1 xc^{x^2-1}=(10-c)^{x-1} x c x 2 − 1 = ( 1 0 − c ) x − 1 , 这表明x > 0 x>0 x > 0 .
若 x > 1 x>1 x > 1 , 则 x c x 2 − 1 > c x 2 − 1 > c x − 1 > ( 10 − c ) x − 1 x c^{x^{2}-1}>c^{x^{2}-1}>c^{x-1}>(10-c)^{x-1} x c x 2 − 1 > c x 2 − 1 > c x − 1 > ( 1 0 − c ) x − 1 , 这是不可能的, 因为在这不等式链中, 第1项与最后的项相等. 这里利用了事实c > 5 c>5 c > 5 .
若 0 < x < 1 0<x<1 0 < x < 1 , 则 x c x 2 − 1 < x c x − 1 x c^{x^{2}-1}<x c^{x-1} x c x 2 − 1 < x c x − 1 . 我们来证明 x c x − 1 < ( 10 − c ) x − 1 x c^{x-1}<(10-c)^{x-1} x c x − 1 < ( 1 0 − c ) x − 1 . 作代换 y = x − 1 , y ∈ ( − 1 , 0 ) y=x-1, y \in(-1,0) y = x − 1 , y ∈ ( − 1 , 0 ) , 不等式可改写为 y + 1 < ( 10 − c c ) y y+1<\left(\frac{10-c}{c}\right)^{y} y + 1 < ( c 1 0 − c ) y . 指数的底数小于 1 1 1 , 从而它递减, 而左边的线性函数递增. 两边在 y = 0 y=0 y = 0 时相等. 推出不等式. 利用它我们再断定 x c x 2 − 1 ≠ ( 10 − c ) x − 1 x c^{x^{2}-1} \neq(10-c)^{x-1} x c x 2 − 1 = ( 1 0 − c ) x − 1 . 这证明了题目中的方程的第3个解不存在. 因此已知方程的唯一解是x = 0 x=0 x = 0 与x = 1. ■ x=1. \blacksquare x = 1 . ■
2022.7.16
【题】令 x x x 是实数, 定义数列 ( x n ) n ⩾ 1 \left(x_{n}\right)_{n \geqslant 1} ( x n ) n ⩾ 1 , x 1 = 1 x_{1}=1 x 1 = 1 , 对 n ⩾ 1 n \geqslant 1 n ⩾ 1 , x n + 1 = x n + n x n x_{n+1}=x^{n}+n x_{n} x n + 1 = x n + n x n .
试求:∏ n = 1 ∞ ( 1 − x n x n + 1 ) \displaystyle\prod_{n=1}^{\infty}\left(1-\frac{x^{n}}{x_{n+1}}\right) n = 1 ∏ ∞ ( 1 − x n + 1 x n ) . ▶ \blacktriangleright ▶
◀ \blacktriangleleft ◀ 置P N = ∏ n = 1 N ( 1 − x n x n + 1 ) = ∏ n = 1 N ( x n + 1 − x n x n + 1 ) = ∏ n = 1 N ( n x n x n + 1 ) = N ! x N + 1 P_{N}=\displaystyle\prod_{n=1}^{N}\left(1-\frac{x^{n}}{x_{n+1}}\right)=\prod_{n=1}^{N}\left(\frac{x_{n+1}-x^{n}}{x_{n+1}}\right)=\prod_{n=1}^{N}\left({\frac{nx_n}{x_{n+1}}}\right)=\frac{N!}{x_{N+1}} P N = n = 1 ∏ N ( 1 − x n + 1 x n ) = n = 1 ∏ N ( x n + 1 x n + 1 − x n ) = n = 1 ∏ N ( x n + 1 n x n ) = x N + 1 N !
于是
1 P n + 1 − 1 P n = x n + 2 ( n + 1 ) ! − x n + 1 n ! = x n + 2 − ( n + 1 ) x n + 1 ( n + 1 ) ! = x n + 1 ( n + 1 ) ! , n ⩾ 1 \frac{1}{P_{n+1}}-\frac{1}{P_{n}}=\frac{x_{n+2}}{(n+1) !}-\frac{x_{n+1}}{n !}=\frac{x_{n+2}-(n+1) x_{n+1}}{(n+1) !}=\frac{x^{n+1}}{(n+1) !}, n \geqslant 1 P n + 1 1 − P n 1 = ( n + 1 ) ! x n + 2 − n ! x n + 1 = ( n + 1 ) ! x n + 2 − ( n + 1 ) x n + 1 = ( n + 1 ) ! x n + 1 , n ⩾ 1
因此
1 P N + 1 = 1 P 1 + ∑ n = 1 N ( 1 P n + 1 − 1 P n ) = 1 + x 1 ! + x 2 2 ! + ⋯ + x N + 1 ( N + 1 ) ! → e x , N → ∞ \frac{1}{P_{N+1}}=\frac{1}{P_1}+\displaystyle\sum_{n=1}^{N}\left(\frac{1}{P_{n+1}}-\frac{1}{P_{n}}\right)=1+\frac{x}{1 !}+\frac{x^{2}}{2 !}+\cdots+\frac{x^{N+1}}{(N+1) !}\to e^{x},N\to \infty P N + 1 1 = P 1 1 + n = 1 ∑ N ( P n + 1 1 − P n 1 ) = 1 + 1 ! x + 2 ! x 2 + ⋯ + ( N + 1 ) ! x N + 1 → e x , N → ∞
故得
∏ n = 1 ∞ ( 1 − x n x n + 1 ) = e − x . ■ \displaystyle\prod_{n=1}^{\infty}\left(1-\frac{x^{n}}{x_{n+1}}\right)=e^{-x}. \blacksquare n = 1 ∏ ∞ ( 1 − x n + 1 x n ) = e − x . ■
2022.7.15
【题】 已知数列{ a n } : 1 , 2 , 2 , 3 , 3 , 3 , 4 , 4 , 4 , 4 , 5 , 5 , 5 , 5 , 5 , ⋯ \{a_n\}:1,2,2,3,3,3,4,4,4,4,5,5,5,5,5, \cdots { a n } : 1 , 2 , 2 , 3 , 3 , 3 , 4 , 4 , 4 , 4 , 5 , 5 , 5 , 5 , 5 , ⋯
试求lim n → ∞ a n n \displaystyle\lim _{n\to \infty}\frac{a_n}{\sqrt{n} } n → ∞ lim n a n . ▶ \blacktriangleright ▶
◀ \blacktriangleleft ◀ 研究这个数列, 可见恰好对满足下式的 m m m :
n 2 − n 2 + 1 ⩽ m ⩽ n 2 + n 2 \frac{n^{2}-n}{2}+1 \leqslant m \leqslant \frac{n^{2}+n}{2} 2 n 2 − n + 1 ⩽ m ⩽ 2 n 2 + n
数列的第 m m m 项是 n n n . 因 m m m 与 n n n 是整数, 故不等式等价于
n 2 − n + 1 4 < 2 m < n 2 + n + 1 4 n^{2}-n+\frac{1}{4}<2 m<n^{2}+n+\frac{1}{4} n 2 − n + 4 1 < 2 m < n 2 + n + 4 1 ,求平方根得
n − 1 2 < 2 m < n + 1 2 n-\frac{1}{2}<\sqrt{2 m}<n+\frac{1}{2} n − 2 1 < 2 m < n + 2 1 , 即 n < 2 m + 1 2 < n + 1 n<\sqrt{2 m}+\frac{1}{2}<n+1 n < 2 m + 2 1 < n + 1 .
现在当且仅当 n = ⌊ 2 m + 1 2 ⌋ n=\left\lfloor\sqrt{2 m}+\frac{1}{2}\right\rfloor n = ⌊ 2 m + 2 1 ⌋ 时上式成立, 于是给出了数列通项公式
a m = ⌊ 2 m + 1 2 ⌋ , m ⩾ 1 a_{m}=\left\lfloor\sqrt{2 m}+\frac{1}{2}\right\rfloor, m \geqslant 1 a m = ⌊ 2 m + 2 1 ⌋ , m ⩾ 1 .
从而lim n → ∞ a n n = 2 \displaystyle\lim _{n\to \infty}\frac{a_n}{\sqrt{n} }=\sqrt{2} n → ∞ lim n a n = 2 . ■ \blacksquare ■
2022.7.14
【题】 若 x + y + z = 0 x+y+z=0 x + y + z = 0 , 证明:
x 2 + y 2 + z 2 2 ⋅ x 5 + y 5 + z 5 5 = x 7 + y 7 + z 7 7 \frac{x^{2}+y^{2}+z^{2}}{2} \cdot \frac{x^{5}+y^{5}+z^{5}}{5}=\frac{x^{7}+y^{7}+z^{7}}{7} 2 x 2 + y 2 + z 2 ⋅ 5 x 5 + y 5 + z 5 = 7 x 7 + y 7 + z 7 . ▶ \blacktriangleright ▶
◀ \blacktriangleleft ◀ 考虑多项式 P ( t ) = t 3 + p t + q P(t)=t^{3}+p t+q P ( t ) = t 3 + p t + q , 它的零点是 x , y , z x, y, z x , y , z .
于是x 2 + y 2 + z 2 = ( x + y + z ) 2 − 2 ( x y + z x + y z ) = − 2 p x^{2}+y^{2}+z^{2}=(x+y+z)^{2}-2(x y+z x+y z)=-2 p x 2 + y 2 + z 2 = ( x + y + z ) 2 − 2 ( x y + z x + y z ) = − 2 p , 把x 3 = − p x − q , y 3 = − p y − q , z 3 = − p z − q x^{3}=-p x-q, y^{3}=-p y-q, z^{3}=-p z-q x 3 = − p x − q , y 3 = − p y − q , z 3 = − p z − q , 相加得
x 3 + y 3 + z 3 = − 3 q x^{3}+y^{3}+z^{3}=-3 q x 3 + y 3 + z 3 = − 3 q ,类似地(各乘x , y , z x,y,z x , y , z 后相加)
x 4 + y 4 + z 4 = − p ( x 2 + y 2 + z 2 ) − q ( x + y + z ) = 2 p 2 x^{4}+y^{4}+z^{4}=-p\left(x^{2}+y^{2}+z^{2}\right)-q(x+y+z)=2 p^{2} x 4 + y 4 + z 4 = − p ( x 2 + y 2 + z 2 ) − q ( x + y + z ) = 2 p 2
因此
x 5 + y 5 + z 5 = − p ( x 3 + y 3 + z 3 ) − q ( x 2 + y 2 + z 2 ) = 5 p q x 7 + y 7 + z 7 = − p ( x 5 + y 5 + z 5 ) − q ( x 4 + y 4 + z 4 ) = − 5 p 2 q − 2 p 2 q = − 7 p 2 q \begin{aligned}
x^{5}+y^{5}+z^{5}&=-p\left(x^{3}+y^{3}+z^{3}\right)-q\left(x^{2}+y^{2}+z^{2}\right)=5 p q \\
x^{7}+y^{7}+z^{7}&=-p\left(x^{5}+y^{5}+z^{5}\right)-q\left(x^{4}+y^{4}+z^{4}\right) \\
&=-5 p^{2} q-2 p^{2} q=-7 p^{2} q
\end{aligned} x 5 + y 5 + z 5 x 7 + y 7 + z 7 = − p ( x 3 + y 3 + z 3 ) − q ( x 2 + y 2 + z 2 ) = 5 p q = − p ( x 5 + y 5 + z 5 ) − q ( x 4 + y 4 + z 4 ) = − 5 p 2 q − 2 p 2 q = − 7 p 2 q
于是目中的关系式化为明显的
− 2 p 2 ⋅ 5 p q 5 = − 7 p 2 q 7 . ■ \frac{-2 p}{2} \cdot \frac{5 p q}{5}=\frac{-7 p^{2} q}{7}.\blacksquare 2 − 2 p ⋅ 5 5 p q = 7 − 7 p 2 q . ■
2022.7.13
【题】设 λ 1 , ⋯ , λ n \lambda_{1}, \cdots, \lambda_{n} λ 1 , ⋯ , λ n 为不同的实数, 且不同于 0 , − 1 , − 2 , ⋯ , − ( n − 1 ) 0,-1,-2,\cdots,-(n-1) 0 , − 1 , − 2 , ⋯ , − ( n − 1 ) . 试证明下列行列式不为零
∣ 1 λ 1 1 λ 2 ⋯ 1 λ n 1 λ 1 + 1 1 λ 2 + 1 ⋯ 1 λ n + 1 ⋮ ⋮ ⋮ 1 λ 1 + n − 1 1 λ 2 + n − 1 ⋯ 1 λ n + n − 1 ∣ \left|\begin{array}{cccc}
\frac{1}{\lambda_{1}} & \frac{1}{\lambda_{2}} & \cdots & \frac{1}{\lambda_{n}} \\
\frac{1}{\lambda_{1}+1} & \frac{1}{\lambda_{2}+1} & \cdots & \frac{1}{\lambda_{n}+1} \\
\vdots & \vdots & & \vdots \\
\frac{1}{\lambda_{1}+n-1} & \frac{1}{\lambda_{2}+n-1} & \cdots & \frac{1}{\lambda_{n}+n-1}
\end{array}\right|
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ λ 1 1 λ 1 + 1 1 ⋮ λ 1 + n − 1 1 λ 2 1 λ 2 + 1 1 ⋮ λ 2 + n − 1 1 ⋯ ⋯ ⋯ λ n 1 λ n + 1 1 ⋮ λ n + n − 1 1 ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
▶ \blacktriangleright ▶
◀ \blacktriangleleft ◀ 反证法.假设该行列式等于零. 那么, 它是线性相关的.
即存在不全为零的系数 c 0 , c 1 , ⋯ , c n − 1 c_{0}, c_{1}, \cdots, c_{n-1} c 0 , c 1 , ⋯ , c n − 1 , 对所有 i = 1 , 2 , ⋯ , n i=1,2, \cdots, n i = 1 , 2 , ⋯ , n 有
c 0 λ i + c 1 λ i + 1 + c 2 λ i + 2 + ⋯ + c n − 1 λ i + ( n − 1 ) = 0 \frac{c_{0}}{\lambda_{i}}+\frac{c_{1}}{\lambda_{i}+1}+\frac{c_{2}}{\lambda_{i}+2}+\cdots+\frac{c_{n-1}}{\lambda_{i}+(n-1)}=0 λ i c 0 + λ i + 1 c 1 + λ i + 2 c 2 + ⋯ + λ i + ( n − 1 ) c n − 1 = 0
考虑函数f ( λ ) = c 0 λ + c 1 λ + 1 + ⋯ + c n − 1 λ + ( n − 1 ) f(\lambda)=\frac{c_{0}}{\lambda}+\frac{c_{1}}{\lambda+1}+\cdots+\frac{c_{n-1}}{\lambda+(n-1)} f ( λ ) = λ c 0 + λ + 1 c 1 + ⋯ + λ + ( n − 1 ) c n − 1
通分得f ( λ ) = P ( λ ) λ ( λ + 1 ) ⋯ ( λ + ( n − 1 ) ) f(\lambda)=\frac{P(\lambda)}{\lambda(\lambda+1) \cdots(\lambda+(n-1))} f ( λ ) = λ ( λ + 1 ) ⋯ ( λ + ( n − 1 ) ) P ( λ )
其中 P ( λ ) P(\lambda) P ( λ ) 是关于 λ \lambda λ 的次数不超过 n − 1 n-1 n − 1 的多项式.
因 f ( λ i ) = 0 f(\lambda_{i})=0 f ( λ i ) = 0 . 且 λ i ≠ 0 , − 1 , ⋯ , − ( n − 1 ) \lambda_{i} \neq 0,-1, \cdots,-(n-1) λ i = 0 , − 1 , ⋯ , − ( n − 1 ) , 则 P ( λ i ) = 0 P\left(\lambda_{i}\right)=0 P ( λ i ) = 0 ,
即数 λ 1 , ⋯ , λ n \lambda_{1}, \cdots, \lambda_{n} λ 1 , ⋯ , λ n 是多项式 P ( λ ) P(\lambda) P ( λ ) 的根. 但多项式次数不超过 n − 1 n-1 n − 1 , 如果它不恒等于零的话, 就不可能有 n 个不同的根.
因此, P ( λ ) ≡ 0 P(\lambda) \equiv 0 P ( λ ) ≡ 0 , 当 λ ≠ 0 , − 1 , ⋯ , − ( n − 1 ) , f ( λ ) = 0 \lambda \neq 0,-1, \cdots,-(n-1), f(\lambda)=0 λ = 0 , − 1 , ⋯ , − ( n − 1 ) , f ( λ ) = 0 .由此得到,所有数 c i c_{i} c i 等于零.
事实上, 若 c i ≠ 0 c_{i} \neq 0 c i = 0 , 则当 λ → − i , c i λ + i → ± ∞ , f ( λ ) → ∞ \lambda \rightarrow-i, \frac{c_{i}}{\lambda+i} \rightarrow \pm \infty, f(\lambda) \rightarrow \infty λ → − i , λ + i c i → ± ∞ , f ( λ ) → ∞ 与 f ( λ ) = 0 f(\lambda)=0 f ( λ ) = 0 相矛盾. 于是, 我们证明了所有 c i c_{i} c i 等于零, 这与假设相矛盾. ■ \blacksquare ■
2022.7.12
【题】试求lim t → 0 + ∑ n = 1 ∞ e − n 2 t n ln t \displaystyle\lim _{t \rightarrow 0^{+}} \frac{\displaystyle\sum_{n=1}^{\infty} \frac{\mathrm{e}^{-n^{2} t}}{n}}{\ln t} t → 0 + lim ln t n = 1 ∑ ∞ n e − n 2 t ▶ \blacktriangleright ▶
◀ \blacktriangleleft ◀
由级数收敛的积分判别法的证明可得
0 ⩽ ∑ n = 1 ∞ e − n 2 t n − ∫ 1 + ∞ e − x 2 t x d x ⩽ 1 0 \leqslant \displaystyle\sum_{n=1}^{\infty} \frac{\mathrm{e}^{-n^{2} t}}{n}-\int_{1}^{+\infty} \frac{\mathrm{e}^{-x^{2} t}}{x} \mathrm{~d} x \leqslant 1 0 ⩽ n = 1 ∑ ∞ n e − n 2 t − ∫ 1 + ∞ x e − x 2 t d x ⩽ 1
即
∑ n = 1 ∞ e − n 2 t n ∼ t → 0 + ∫ 1 + ∞ e − x 2 t x d x = ∫ t + ∞ e − y 2 y d y = ∫ t 1 d x x + ∫ t 1 e − x 2 − 1 x d x + ∫ 1 + ∞ e − x 2 x d x \begin{aligned}
\displaystyle\sum_{n=1}^{\infty} \frac{\mathrm{e}^{-n^{2} t}}{n} & \underset{t \rightarrow 0^{+}}{\sim} \int_{1}^{+\infty} \frac{\mathrm{e}^{-x^{2} t}}{x} \mathrm{~d} x \\ & =\int_{\sqrt{t}}^{+\infty} \frac{\mathrm{e}^{-y^{2}}}{y} \mathrm{~d} y \\ &=
\int_{\sqrt{t}}^{1} \frac{\mathrm{d} x}{x}+\int_{\sqrt{t}}^{1} \frac{\mathrm{e}^{-x^{2}}-1}{x} \mathrm{~d} x+\int_{1}^{+\infty} \frac{\mathrm{e}^{-x^{2}}}{x} \mathrm{~d} x
\end{aligned} n = 1 ∑ ∞ n e − n 2 t t → 0 + ∼ ∫ 1 + ∞ x e − x 2 t d x = ∫ t + ∞ y e − y 2 d y = ∫ t 1 x d x + ∫ t 1 x e − x 2 − 1 d x + ∫ 1 + ∞ x e − x 2 d x
不难证明第二个和第三个积分当 t → 0 + t \rightarrow 0^{+} t → 0 + 时收敛.
于是
lim t → 0 + ∑ n = 1 ∞ e − n 2 t n ln t = lim t → 0 + ∫ t 1 d x x ln t = − 1 2 . ■ \displaystyle\lim _{t \rightarrow 0^{+}} \frac{\displaystyle\sum_{n=1}^{\infty} \frac{\mathrm{e}^{-n^{2} t}}{n}}{\ln t}=\lim _{t \rightarrow 0^{+}} \frac{\int_{\sqrt{t}}^{1} \frac{\mathrm{d} x}{x}}{\ln t}=-\frac{1}{2}. \blacksquare t → 0 + lim ln t n = 1 ∑ ∞ n e − n 2 t = t → 0 + lim ln t ∫ t 1 x d x = − 2 1 . ■
2022.7.11
【题】用 M M M 表示使级数 ∑ n = 0 ∞ sin ( n ! π x ) \displaystyle\sum_{n=0}^{\infty} \sin (n ! \pi x) n = 0 ∑ ∞ sin ( n ! π x ) 收敛的点集, x ∈ R x \in \mathbb{R} x ∈ R . 试证明:
M M M 处处稠密.
e ∈ M e \in M e ∈ M . ▶ \blacktriangleright ▶
◀ \blacktriangleleft ◀
任意区间都含有有理点 x = p q x=\frac{p}{q} x = q p , 当 n ⩾ q n \geqslant q n ⩾ q 时, 有 n ! x = q ( q − 1 ) ! ( q + 1 ) ⋯ , n ∈ Z n ! x= q(q-1) !(q+1) \cdots, n \in \mathbb{Z} n ! x = q ( q − 1 ) ! ( q + 1 ) ⋯ , n ∈ Z . 即有 sin ( n ! π x ) = 0 \sin (n ! \pi x)=0 sin ( n ! π x ) = 0 .
因此对上述有理点x x x ,级数∑ n = 0 ∞ sin ( n ! π x ) \displaystyle\sum_{n=0}^{\infty} \sin (n ! \pi x) n = 0 ∑ ∞ sin ( n ! π x ) 收敛,故M M M 处处稠密. ■ \blacksquare ■
首先 n ! e = ∑ k = 0 ∞ n ! k ! = ∑ k = 0 n − 2 n ! k ! + ( n + 1 ) + 1 n + 1 + ∑ k = n + 2 ∞ n ! k ! ( n ⩾ 2 ) n!\mathrm{e}=\displaystyle\sum_{k=0}^{\infty} \frac{n!}{k!}=\displaystyle\sum_{k=0}^{n-2} \frac{n!}{k!}+(n+1)+\frac{1}{n+1}+\sum_{k=n+2}^{\infty}\frac{n!}{k!}(n\geqslant 2) n ! e = k = 0 ∑ ∞ k ! n ! = k = 0 ∑ n − 2 k ! n ! + ( n + 1 ) + n + 1 1 + k = n + 2 ∑ ∞ k ! n ! ( n ⩾ 2 )
注意到∑ k = 0 n − 2 n ! k ! = n ( n − 1 ) ∑ k = 0 n − 2 ( n − 2 ) ! k ! \displaystyle\sum_{k=0}^{n-2} \frac{n !}{k !}=n(n-1) \sum_{k=0}^{n-2} \frac{(n-2) !}{k !} k = 0 ∑ n − 2 k ! n ! = n ( n − 1 ) k = 0 ∑ n − 2 k ! ( n − 2 ) ! 是偶数,而
∑ k = n + 2 ∞ n ! k ! = 1 ( n + 1 ) ( n + 2 ) + 1 ( n + 1 ) ( n + 2 ) ( n + 3 ) + ⋯ + 1 ( n + 1 ) ( n + 2 ) ⋯ ( n + L ) + ⋯ ⩽ ∑ m = 0 ∞ 1 ( n + 1 ) ( n + 2 ) ( n + 3 ) m = n + 3 ( n + 1 ) ( n + 2 ) 2 = O ( 1 n 2 )
\begin{aligned}\displaystyle\sum_{k=n+2}^{\infty} \frac{n !}{k !}=& \frac{1}{(n+1)(n+2)}+\frac{1}{(n+1)(n+2)(n+3)}+\cdots+\\
& \frac{1}{(n+1)(n+2) \cdots(n+L)}+\cdots \leqslant \\
& \sum_{m=0}^{\infty} \frac{1}{(n+1)(n+2)(n+3)^{m}}=\\
& \frac{n+3}{(n+1)(n+2)^{2}}=O\left(\frac{1}{n^{2}}\right)
\end{aligned} k = n + 2 ∑ ∞ k ! n ! = ( n + 1 ) ( n + 2 ) 1 + ( n + 1 ) ( n + 2 ) ( n + 3 ) 1 + ⋯ + ( n + 1 ) ( n + 2 ) ⋯ ( n + L ) 1 + ⋯ ⩽ m = 0 ∑ ∞ ( n + 1 ) ( n + 2 ) ( n + 3 ) m 1 = ( n + 1 ) ( n + 2 ) 2 n + 3 = O ( n 2 1 )
于是
sin ( n ! π e ) = sin ( ∑ i = 0 n − 2 π n ! k ! + π ( n + 1 ) + π n + 1 + π ∑ k = n + 2 ∞ n ! k ! ) = sin ( π ( n + 1 ) + π n + 1 + π ∑ k = n + 2 ∞ n ! k ! ) = sin ( π ( n + 1 ) + π n + 1 ) + θ n = ( − 1 ) n + 1 sin π n + 1 + θ n \begin{aligned}
\sin (n ! \pi \mathrm{e})&= \sin \left(\displaystyle\sum_{i=0}^{n-2} \frac{\pi n !}{k !}+\pi(n+1)+\frac{\pi}{n+1}+\pi \sum_{k=n+2}^{\infty} \frac{n !}{k !}\right) \\
&= \sin \left(\pi(n+1)+\frac{\pi}{n+1}+\pi \sum_{k=n+2}^{\infty} \frac{n !}{k !}\right)\\
&= \sin \left(\pi(n+1)+\frac{\pi}{n+1}\right)+\theta_{n}\\
&=(-1)^{n+1} \sin \frac{\pi}{n+1}+\theta_{n}
\end{aligned} sin ( n ! π e ) = sin ( i = 0 ∑ n − 2 k ! π n ! + π ( n + 1 ) + n + 1 π + π k = n + 2 ∑ ∞ k ! n ! ) = sin ( π ( n + 1 ) + n + 1 π + π k = n + 2 ∑ ∞ k ! n ! ) = sin ( π ( n + 1 ) + n + 1 π ) + θ n = ( − 1 ) n + 1 sin n + 1 π + θ n
其中,∣ θ n ∣ ⩽ π ∑ k = n + 2 ∞ n ! k ! = O ( 1 n 2 ) \left|\theta_{n}\right| \leqslant \pi \displaystyle\sum_{k=n+2}^{\infty} \frac{n !}{k !}=O\left(\frac{1}{n^{2}}\right) ∣ θ n ∣ ⩽ π k = n + 2 ∑ ∞ k ! n ! = O ( n 2 1 )
得到∑ n = 0 ∞ sin ( n ! π e ) = 2 sin π e + ∑ n = 2 ∞ ( − 1 ) n + 1 sin π n + 1 + ∑ n = 2 ∞ θ n \displaystyle\sum_{n=0}^{\infty} \sin (n ! \pi e)=2 \sin \pi e+\sum_{n=2}^{\infty}(-1)^{n+1} \sin \frac{\pi}{n+1}+\sum_{n=2}^{\infty} \theta_{n} n = 0 ∑ ∞ sin ( n ! π e ) = 2 sin π e + n = 2 ∑ ∞ ( − 1 ) n + 1 sin n + 1 π + n = 2 ∑ ∞ θ n
由莱布尼茨判别法,级数∑ n = 2 ∞ ( − 1 ) n + 1 sin π n + 1 \displaystyle\sum_{n=2}^{\infty}(-1)^{n+1} \sin \frac{\pi}{n+1} n = 2 ∑ ∞ ( − 1 ) n + 1 sin n + 1 π 收敛.
而级数 ∑ n = 2 ∞ θ n = ∑ n = 2 ∞ O ( 1 n 2 ) \displaystyle\sum_{n=2}^{\infty} \theta_{n}=\sum_{n=2}^{\infty} O\left(\frac{1}{n^{2}}\right) n = 2 ∑ ∞ θ n = n = 2 ∑ ∞ O ( n 2 1 ) 绝对收敛.
因此级数 ∑ n = 0 ∞ sin ( n ! π e ) \displaystyle\sum^{\infty}_{n=0} \sin (n ! \pi \mathrm{e}) n = 0 ∑ ∞ sin ( n ! π e ) 是收敛的, 即e ∈ M \mathrm{e} \in M e ∈ M .■ \blacksquare ■
2022.7.10
【题】试证明∑ n = 1 ∞ ( − 1 ) [ 2 n x ] 2 n = 1 + 2 [ x ] − 2 x , x ≥ 0 \displaystyle\sum_{n=1}^{\infty} \frac{(-1)^{\left[2^{n} x\right]}}{2^{n}}=1+2[x]-2x,x\geq 0 n = 1 ∑ ∞ 2 n ( − 1 ) [ 2 n x ] = 1 + 2 [ x ] − 2 x , x ≥ 0 . ▶ \blacktriangleright ▶
◀ \blacktriangleleft ◀ 设x = ( a k a k − 1 ⋯ a 0 . b 1 b 2 ⋯ ‾ ) 2 x=(\overline{a_{k}a_{k-1}\cdots a_0 .b_1b_2\cdots })_2 x = ( a k a k − 1 ⋯ a 0 . b 1 b 2 ⋯ ) 2 为x x x 的标准二进制表示,则对于∀ n ∈ N + \forall n\in\mathbb{N_{+}} ∀ n ∈ N + ,有
[ 2 n x ] = ( a k a k − 1 ⋯ a 0 b 1 b 2 ⋯ b n ‾ ) 2 ≡ b n ( m o d 2 ) [2^nx]=(\overline{a_{k}a_{k-1}\cdots a_0 b_1b_2\cdots b_n})_2\equiv b_n(\mod2) [ 2 n x ] = ( a k a k − 1 ⋯ a 0 b 1 b 2 ⋯ b n ) 2 ≡ b n ( m o d 2 ) ,
考虑到b n ∈ { 0 , 1 } b_n\in\{0,1\} b n ∈ { 0 , 1 } ,故必有( − 1 ) [ 2 n x ] = ( − 1 ) b n = 1 − 2 b n (-1)^{[2^nx]}=(-1)^{b_n}=1-2b_n ( − 1 ) [ 2 n x ] = ( − 1 ) b n = 1 − 2 b n ,从而
∑ n = 1 ∞ ( − 1 ) [ 2 n x ] 2 n = ∑ n = 1 ∞ 1 − 2 b n 2 n = ∑ n = 1 ∞ 1 2 n − 2 ∑ n = 1 ∞ b n 2 n = 1 − 2 ( 0. b 1 b 2 ⋯ ‾ ) 2 = 1 − 2 ( x − [ x ] ) = 1 + 2 [ x ] − 2 x . ■ \begin{aligned} \displaystyle\sum_{n=1}^{\infty} \frac{(-1)^{\left[2^{n} x\right]}}{2^{n}}
&=\displaystyle\sum_{n=1}^{\infty} \frac{1-2b_n}{2^{n}}
=\displaystyle\sum_{n=1}^{\infty}\frac{1}{2^n}-2\displaystyle\sum_{n=1}^{\infty} \frac{b_n}{2^n} \\
&=1-2(\overline{0.b_1 b_2\cdots})_2
=1-2(x-[x])=1+2[x]-2x .\blacksquare
\end{aligned} n = 1 ∑ ∞ 2 n ( − 1 ) [ 2 n x ] = n = 1 ∑ ∞ 2 n 1 − 2 b n = n = 1 ∑ ∞ 2 n 1 − 2 n = 1 ∑ ∞ 2 n b n = 1 − 2 ( 0 . b 1 b 2 ⋯ ) 2 = 1 − 2 ( x − [ x ] ) = 1 + 2 [ x ] − 2 x . ■